
(N
1

<

3 OCT 1 9289

INTEGRATING SYNTAX, SEMANTICS, AND DISCOURSE
DARPA NATURAL LANGUAGE UNDERSTANDING PROGRAM

R&D FINAL REPORT
Unisys Defense Systems

Contract Number: N00014-85-C-0012

Volume II -- DOCUMENTATION

ARPA ORDER NUMBER: 5262
PROGRAM CODE NO. NR 049-602 dated 10 August 1984 (433)
CONTRACTOR: Unisys/Defense Systems
CONTRACT AMOUNT: 1,704,901
CONTRACT NO: N00014-85-C-0012
EFFECTIVE DATE OF CONTRACT: 4/29/85
EXPIRATION DATE OF CONTRACT: 9/30/89
PRINCIPAL INVESTIGATOR: Dr. Lynette Hirschman PHONE NO. (215) 648-7554

SHORT TITLE OF WORK: DARPA Natural Language Understanding Program

REPORTING PERIOD: 4,/29/85-9/30/89

The views and conclusions contained in this document are those of the authors and should
not be interpreted as necessarily representing the official policies, either expressed or
implied, of the Defense Advanced Research Projects Agency or the U.S. Government.

- 711 89 10189

TABLE OF CONTENTS - VOL. II DOCUMENTATION

A. PUNDIT USER'S GUIDE , VERSION 1.2

B. PUNDIT LEXICAL ENTRY PROCEDURE USER's GUIDE , VERSION 1.1

C. PUNDIT LEXICAL ENTRY PROCEDURE MINI-RELEASE NOTES ,VERSION 1.2

D. A GUIDE TO OBJECT OPTIONS IN PUNDIT

E. A USER'S GUIDE TO THE SELECTION MODULE

F. PUNDIT'S SYNTACTIC COMPONENT: DESCRIPTION OF COVERAGE

G. LEXICAL LOOK-UP PROCEDURE IN PUNDIT

H. PROLOG STRUCTURE EDITOR

I. SYSTEM ADMINISTRATION FOR PUNDIT (SAP)

DISTRIBUTION STATEENT "A" per
Dr. Alan Meyroi-t-..
Code 1l33-ONI -
10/12/89 CG

A-o_ _

I
U

I
I

* PUNDIT

User's Guide*

*Version 1.2

£I July 6, 1988

I
Il

Unisys Logic-Based Systems
Paoli Research Center

P.O. Box 517, Paoli, PA 19301I

*This work ha. been supported by DARPA contract N00014-85-C-0012, administered by the Office of

Naval Research.

I
I

I Contents

3 1 Introduction 1

1.1 The User's Guide .. 1

1 1.2 The Software 1

2 Running PUNDIT 2

2.1 Core Images and Domain Images 2

2.2 The MUCK Domain 21 2.3 parse and pundit..... 2

2.4 Before You Begin 3

2.5 Processing a Sentence........ 3

3 Interpreting PUNDIT Output 5

3.1 The Parse Tree 5

3.2 The ISR 5

33.3 The IDR 9

1 4 Commonly Used Procedures 12

4.1 edit.rule 12

4.2 edit-word . 12

4.3 parse . 12

S4.4 pundit 13

4.5 punt . 15

4.6 rdb.rem ove 15

4.7 readIn . 16

4.8 squery 16

4.9 ssucceed 16

4.10 switches 17

4.10.1 enter.new-word 18

4.10.2 np-trace 18

4.10.3 parse-tree 18

U
I

4.10.4 conjunction 19 1
4.10.5 semantics 19

4.10.6 translatedgrammai -present 19 m

4.10.7 translated.grammar-in-use 19

4.10.8 grinder 19

4.10.9 text-mode .. 20

4. 10. 10 decomposition -trace 20

4.10.11summary 20

4.10.12show.isr 21

4.10.13 selection .. 21

4.10.14enable-dbaccess 21 U
4.10.15count 21

4.10.16alLtime 21

4.10.17time-trace .. 22 1
4.10.18windowdisplay 22

A Installing the System 23

B Building PUNDIT Images 24 3
B.1 Building a Core PUNDIT Image 24

B.2 Creating a Functional Core PUNDIT Image 24 5
B.3 Creating a Complete Domain-Specific Image 25

C Customizing Your PUNDIT User Environment 26 1
D PUNDIT Files and Dependencies 27

D.1 Files 27

D.2 Dependencies 30 3
E PUNDIT Bibliography 32

E.1 Background Reading 32 3
E.2 Papers and Presentations 32

E.3 Technical Documentation 34 1
ii I

I

I List of Figures

1 Running PUNDIT .. 4

2 A glossary of string-grammar terms 6

3 Parse tree for Visual sighting of periscope followed 4y attack with asroc and
torpedos 7

4 IsR for Visual sighting of periscope followed by attack with asroc and torpedos. 8

5 . JR for Visual sighting of periscope followed by attack with asroc and torpedos. 11

6 Using the pundit procedure 14

7 Using the rdb.remove utility 15

8 Using the switches utility 17

R9 Setting the grinder switch 20

10 Sample prolog. ini file 26

I

I
I
I
I

Il

I!i
...U- .-... "-l' l m nn -, m

1 1 LTRODUCTION

1 Introduction

3 1.1 The User's Guide

The PUNDIT User's Guide is intended to provide a concise and general introduction to the
facilities of the PUNDIT text-processing system. The intended audience is computational
linguists familiar with Quintus Prolog. While this document is not a reference manual,
and does not in itself contain sufficient information for you to either extend the system or
port it to a new domain, we have tried to cover the operational basics: how to run PUNDIT
(Section 2) and how to interpret PUNDIT'S output (Section 3). In addition, Section 4
documents the two main procedures for accessing the system (parse and pundit), as wel'
as a number of other procedures which we make frequent use of as developers. Appendix
A and Appendix B will help you set the system up. Appendix D identifies the core and
domain files, and Appendix E lists papers, presentations, and technical documentation9 available for PUNDIT.

1.2 The Software

The User's Guide is designed to accompany a subset of the text-understanding software
which has been developed at the Paoli Research Center, as it exists on the date of pub-
lication: the core components of PUNDIT, together with the domain-specific components
developed to process Navy tactical messages (RAINFORMs). This domain will be referred
to henceforth as the MUCK domain (an acronym for the message understanding confer-
ence which occasioned the development of the software). The MUCK software is essentially
similar to that developed for other domains, and may be considered representative: it
includes a domain-specific message input screen, lexicon, knowledge base, semantics ruies
and database definitions, and it supports both analysis of text and limited natural lan-
guage queries. It differs from other domain software chiefly in having a comparatively richg knowledge base.

I
I
I
I
I
I

2 RUNNING PUNDIT 2

2 Running PUNDIT

2.1 Core Images and Domain Images

Before you can use PUNDIT, the software must be installed at your site and the images
built. Appendix A contains instructions for creating a PUNDIT core image and a MUCK

domain image.

The core image is not functional, and is generally used only to build the domain images.'
In the discussion that follows, it will be assumed that you have a MUCK domain image
available to you.

2.2 The MUCK Domain

The MUCK domain has been designed to process the Remarks field of Navy tactical mes-
sages. Since the formatted fields in these messages contain information which establishes
the initial context for interpreting the text (message originator, date/time, etc.), we have
developed a special front-end to collect this information. This message front-end is ac-
cessed by issuing the command pundit. See Section 4 for more information about this
command.

In order to make use of the MUCK domain image for syntactic and semantic analysis of
natural language input, you will need to know something about the sublanguage and the
knowledge base for this domain. In the file muck.working.pl you will find a subset of
the messages from our message corpus which PUNDIT is currently able to process. By
examining other domain-specific files such as the lexicon, the knowledge base, and the
semantics rules, you should be in a position to construct your own input (see Appendix
D for a list of these files).

2.3 parse and pundit

The pundit command (discussed above) invokes the domain-specific message processing
front-end to the system, which collects both message header information and the message
body. An alternative, domain-independent method of accessing the system is provided by
parse, which prompts only for the text to be processed. Many of the researchers working
on PUNDIT currently interact with the system using parse, although certain higher-level
processes-reference resolution in particulax-do not perform as well as they otherwise
could, since the initial discourse context is empty. The parse command, however, provides
more options for developers, and is the only command to use when no semantic processing
is desired (the front-end invoked by pundit assumes that a complete analysis is required).
These two commands are discussed in more detail in Section 4.

'The core image contains only the core procedures of PUNDIT, including the core lexicon (see Appendix
D). See Appendix B for details on how to create a functional image from the core image.

2 RUNNING PUNDIT 3

2.4 Before You Begin

Since we will be using a text from the MUCK domain to illustrate PUNDIT's operation, at
this point you may wish to load the MUCK image. Before using parse or pundit, however,
you will first need to set a few of the software switches which enable or disable various
system features. Do this by executing the switches procedure (described in more detail
in Section 4). The switches procedure will display the current switch settings in the
image, and will prompt you for a list of switches to be changed. Make sure, at least for
now, that you have the following switches turned on, and that all the others are turned
off:

1. parse-tree

2. conjunction

3. semantics

4. translated.grammar.present

5. translatedgrammar-in-use

6. selection

At this stage you may also want to tell the Selection module not to query you about new
co-occurrence patterns. Call the procedure ssucceed (see Section 4 for more details).

?.5 Processing a Sentence

Having brought up the MUCK domain image and set your switches, you are are now ready
to analyze a sentence. Call parse, and you should see the prompt "sentence:". Since
the following section describes the output generated from processing the sentence visual
sighting of periscope followed by attack with asroc and torpedos., you might want t.o type it
in now, including the final period. After typing the sentence in, you will need to signal the
end of input by entering two carriage-returns. The following is a transcript of someone
doing what you have just been asked to do in the last two subsections2 .

2 Note that if you later create a prolog. ini file, as described in Appendix C, your initial switch settings
may differ from those shown in the figure.

2 RUNNING PUNDIT 4

%/nlp/nlp/pundit/muck/Muck .qimage

Quintus Prolog Release 2.2 (Sun-3, Unix 3.2)

Copyright (C) 1987, Quintus Computer Systems, Inc. All rights reserved.

1310 Villa Street, Mountain View, California (415) 965-7700

1 ?- switches.

1. enter.new-.word ------------------ > OFF

2. np..trac- ------------------------ > OFF

3. parse-.tre----------------------> OFF

4. conjunction -------------------------------- > ON

5. semantic-----------------------> OFF

6. translated-.grammar..present ----------------- > ON

7. translated-gramar-in..us---------OFF
8. grinder ------------------------- > OFF

9. text-.mode ------------------------> OFF

10. decomposition-.trace ------------ > OFF

11. summar------------------------> OFF

12. show..isr ----------------------- > CFF

13. selection --------------------------------- > ON

14. enable..db..acces---------------> OFF

15. count -------------------------- > OFF

16. all-.time-----------------------> OFF

17. time-.trace------------------ -- > OFF

18. window-.display ----------------- > OFF

Please choose a list of switches, or type '"ok.'' -- [3,5,7].

Changed the switch: parse-.tree--------------------------------- > ON

Changed the switch: semantics --------------------------------- > ON

Changed the switch: translated.grammar.in..us----------------- > ON
yes
I ?- ssucceed.
Setting selection switch unknown-.selection to------------ > succeed

yes
I ?- parse.

sentence: visual sighting of periscope followed by attack with asroc

and torpedos.

Figure 1: Running PUNDIT

3 INTERPRETING PUNDIT OUTPUT

3 Interpreting PUNDIT Output

Syntactic processing in PUNDIT yields two syntactic descriptions of a sentence: a detailed
surface structure parse tree, and an operator-argument representation called the Interme-
diate Syntactic Representation, or iSR. The IsR regularizes the information in the parse
tree, reducing surface structure variants to a single canonical form and eliminating details
not required for semantic analysis.

PUNDIT's semantic and pragmatic components take the Ist as input and produce a final
rep. .sentation of the information conveyed by the sentence which includes a decomposition
of verbs into a structure of more basic predications, resolution of anaphoric references, and
an analysis of temporal relations. The resulting data structure is known as the Integrated
Discourse Representation, or IDR.

These three kinds of output will be illustrated for the following sentence:

Visual sighting of periscope followed by attack with asroc and torpedos.

This particular sentence is characteristic of the sort of input PUNDIT has been designed to
handle. Note the ellipsis typical of message sublanguages3 .

3.1 The Parse Tree

The syntactic analyses produced by PUNDIT are in the formalism of String Grammar
[Sager 811. A brief glossary of String Grammar terms is provided below in figure (2) for
help in understanding the parse tree in figure (3). Parse trees are displayed with siblings
indented to the same depth; terminal eiements (lexical items) are preceded by ==.

3.2 The ISR

The ISR corresponding to the parse tree in figure (3) is shown in figure (4), which is
taken from the output of the parse procedure. Two versions of the Isa are given: the
first is essentially the data structure passed to semantic analysis, and the second is a
pretty-printed version.

The isrt requires little knowledge of string grammar to understand. Each clause consists
of syntactic operators (OPS-generally tense and aspect markers derived from the verb
morphology), the verb or predicate (VERB), and its arguments. Conjunction is indicated
by the insertion of the conjunction, followed by the conjuncts (set off by parallel lines).
Note that each noun phrase has an associated referential index; in this example, the Isa
has been printed after semantic and pragmatic anaJysis, and the indices have been bound
to discourse entities (sightI], [periscopel], etc.).

3Translation: The visual sighting of a periscope was followed by an attack (on the submarine) with
anti-submarine rockets and torpedos.

3 INTERPRETING PUNDIT OUTPUT 6

izr a a left-adjunct + z + right-adjunct construction, where z can be:
* 4* a common noun
a * an adjective
v 4* a verb
von € a past participle
tv a tensed verb
ring * a present participle
q a a quantity word
pro 4* a pronoun

nstgo 4 noun string object
nstg 4=: noun string
sa 4 sentence adjunct
pU 4=: preposition + noun (prepositional phrase)
tpos 4=* the/determiner (prenorninal) position
qpos 4 quantity (prenominal) position
apos = adjective (prenominal) position
npos noun (prenominal) position
venpass 4=* past participle + passive
passobj passive object
nullobj 4 null object (for intransitive verb)
that&s that + sentence object
objbe 4 object of be
vingo 4 present participle + object
commaopt comma option
conj wd -=P conjunction word
spword 4=* special (conjunction) word

dstg adverb string, where d stands for adverb.

Figure 2: A glossary of string-grammar terms

I

3 INTERPRETING PUNDIT OUTPUT 7

sentence
censor

fragment
serocopul&

subject
astg
lty
In

apos
adiadj

1ai
&r

adj = visual

vins -m sighting
np

pa
p -- of

lay
In

a sesm periscope
Ivr

vvar
sull'aua

object
beausu

vem padesi

Iveur
oen ve followed

a
pa

p - by
udig
lor

In
ovar

a a- attack
rn

papa -

pa
p m with
nssg

lnr
In
over

coaj wd
spword - and

I or
In

tpoo ft tagged local
qpos a- tagged local
apos m. tagged local
opo o= tagged local

a -- torpedos
passobj

nullobj

Figure 3: Parse tree for Visual sighting of periscope followed by attack with asroc and

torpedos.

3 INTERPRETING PUNDIT OUTPUT 8

INTERMEDIATE SYNTACTIC REPRESENTATION (ISR):

Cuntensed,follow,subj(paslive),obj(Etpos(O). gerund,znvar(Clight,aingula,
[sight i]) ,pp(Eof. Ctpos(3). Envar(Eperiscope,singular. [poriscopelJ)]]3),
adj ([visual])]) ,pp(Cby, Ctpos(O), Envar([attack, singular, Cattackl I]), pp([with,
[and, Etpos(O), nvar([anti-submarin rocket, singular. Crocket1]))]) . Ctpos(OI).
Envar [torpedo, plural, Ctorpedos 13 1)] f 1)]) J)A

OPS: untensed
VERB: follow

SUBJ: passive
OBJ: gerund: sight (sing) : CsightlJ

L_4OD: auj: visual

RIOD: pp: of
periscope (sing) : Eperiscopel)

PP: by
attack (sing) : Catackl] ..

RMOD: pp: with
and

anti-subaarins rocket (sing) : Crocketi)

torpedo (pl) : [torpedosol

Figure 4: Is R for Visual sighting of periscope followed by attack with asroc and torpedos.

3 INTERPRETING PUNDIT OUTPUT 9

3.3 The]LDR

The IDR for the example sentence is shown in figure (5); its major segments are labelled
Ids, Properties, Events and Processes, States, and Important Time Relations.

The Ids segment lists all the id, is.group, and generic predications derived during the
analysis of the example sentence. Generic relations are established primarily to support
subsequent reference through generic they or one-anaphora 4 . Id relations indicate the
semantic type of each non-group discourse entity, while the is.group relations specify the
semantic type, members, and cardinality of each group-level discourse entity. Thus for
example the id relation for the entity [sight i]5, derived from the nominalization visual
sighting of periscope, indicates that the entity is an event, while the is.group relation for
the entity projectilesl] indicates that the entity is a group of projectiles, consisting
of an unknown number of rockets and torpedos.

Relations in the Properties segment of the IDR are heterogeneous: these are miscella-
neous relations derived in the course of processing noun phrases. Prenominal adjectives
typically give rise to such relations; processing of noun-noun compounds may generate
unspecified.relationship predications if no relationship between the nouns can be de-
rived from domain knowledge. In the current example, the reportingPlatform relations
are generated by a procedure which creates a default entity if the identity of the mes-
sage originator is not known-if we had used the pundit procedure instead of parse, this
information would have been supplied by the message header.

The Events and Processes and States segments of the IDR contain predications over
discourse entities which denote situations6 . Typically it is the processing of a clause or a
nominalization which gives rise to a situation entity, and if the situation is an event, then
an entity will be generated for the resulting state as well. The main predicate is the type
of situation (event, state, or process), and each predication has three arguments:

1. The discourse entity

2. The associated semantic representation

3. A moment or period of time for which the situation holds

For example, the first predication in the Events and Processes segment in figure (5)
was derived from processing the IsR for the nominalization visual sighting of periscope.
This particular predication asserts that the referent introduced by the gerund sighting
denotes an event; the semantic representation was constructed based on the semantics
rules for the verb sight. All situations that are labelled events in PUNDIT can be more

4See [Dahl 84] for a description of the relationship between generics and one-anaphora.

'Labels for discourse entities are derived from the lexical head of the expression and are typically
enclosed in brackets. These labels are arbitrary; [entity2] would do equally well.

'See [Passonneau 87] for a more detailed discussion of the semantics of situations.

3 INTERPRETING PUNDIT OUTPUT 10

accurately described as transitions from one state into another, where the full temporal
structure of the event consists of an initial process interval, the moment of transition,
and the new situation that is entered into7. In the second argument of the predication,
the becomeP operator takes as its argument the semantic representation that gives rise to
the new situation that is entered into, [eight2). The third argument of the predication,
moment(Esighti)), should be interpreted functionally as returning the moment at which
the transition into the state in question occurred. Information about this new state,
Esight2), is provided by a predication in the States field.

The final segment of the IDR lists the temporal relations which were analyzed as holding
amongst the situations. Note in particular that since the verb follow is defined as a
temporal operator, PUNDIT has correctly established the temporal relationship between
the sighting and the attack.

'There is no referent introduced for the initial process interval of transition events.

3 INTERPRETING PUNDIT OUTPUT 1

Ids:
generic (torpedo)
is-.group([torpedosi) ,members(torpedo, Etorpedosil) numbC..2122T))
generic (anti-submarine-rocket)
id(anti-subaarine-rocket, Erocketl)
is..group(Eprojectilesi) .members(projectile, [Erocketi) , torpedosll) 1numbC..21279))
id(us-.platiorm, Eus.-.platf oral)
id(process, (attacklED
goeric(periscope)
id(periscope, Epriscopel])

id(stat. (ight2l)
id(event, Csigkt 1)

Propert ies:
report ingPlattorm(Eus-.platforul)
reportingPlatiEorm(Eus..platform3l)

Events and Processes:
event(

CightlJ
becoaeP(sightP(*xperiencer(fus-.platforu3j) ,theme(Eperiscopel) instrument (visual)))

uighted..atP~theueC Eperiscopel) locaton...28507))
moment (sight 1))

process(-

EattackiJ
doP(attackP(actor(Eus-.platiormll) themeC.1960T) ,instrument(CprojectilesiJ)))
period(C attacklJ))

StateOs:
state (

Es ig2ht2J
sightP(.xperiencer(Eus-.platfrrm3J) ,theme([periscopel),instrument(visual))

sighted-.atP (theme([periscopel)) location..28507))
period(CEnight2J))

Important Tine Relations:
the eight state CEsight2J) started with the sight event (Esighti)
the sight event Ctsighti)) preceded the arbitrary event time Cmoment(EattacklJ))
of the attack process (Eattackl)

]Figure 5: [DR for Visual sighting of periscope followed by attack with asroc and torpedos.

4 COMMONLY USED PROCEDURES 12

4 Commonly Used Procedures

4.1 edit-rule

The procedure edit-rule/1 allows you to edit a set of grammar rules for a specified non-
terminal, using the Prolog Structure Editor. For more details, please consult [Riley 86].

4.2 edit-word

The procedure edit-word/1 allows you to edit the lexical entry for a specified word, using
the Prolog Structure Editor. For more details, please consult [Riley 86].

4.3 parse

The procedures parse and pundit (see below) provide two slightly different front-ends to
the PUNDIT system. parse is the access method of preference for those whose primary
interest is parsing or minimizing keystrokes (no prompts are issued to collect message
header information). The parse procedure is a core component of PUNDIT, and is domain-
independent.

The behavior and output of parse are largely controlled by switch settings (see Section
4). Briefly, the parse procedure collects the input to be analyzed by PUNDIT, and then
calls syntactic analysis. Depending on your switch settings, it may then call semantic
analysis, the database extractor, and the summary module (if defined for the current
domain). Depending again on switch _settings, you may be shown both intermediate
and final results: trace messages, the parse trees, the isnas, the IDR, database relations
extracted, and a summarization of the input text s . In the course of processing your input,
PUNDIT may engage you in dialogue if certain switches are turned on: for example, the
Selection module may ask you about co-occurrence patterns; if the switch enter.new.word
is on, you will be prompted to enter lexical information for new words.

The initial prompt to collect the input depends on switch settings as well. If the switch
text.-mode is on, you will be prompted to enter a paragraph of text: that is, one or more
sentences followed by two carriage returns9. In this case, the input will be processed one
sentence at a time, and the first parse for each sentence will be processed.

If the switch text-mode is off, you will be prompted to enter a single sentence; after
processing the first parse, you will be invited to continue with the next parse, until you
wish to stop or all parses have been exhausted.

aThe summary application is not implemented in the miucx domain.
'Since each sentence may optionally be followed by one carriage return, the extra carriage return at

the end is needed to signal the end of input. Moreover, although PUNDIT will process run-on sentences

(without punctuation), the final sentence must have a terminator: a period, exclamation point, or question

mark.

.. .Il I I I

4 COMMONLY USED PROCEDURES 13

In addition to these capabilities, designed for the processing of sentences, you may also an-
alyze lower-level constituents. To process an isolated noun phrase, call parsenp/0 (this
procedure supports both syntactic and semantic analysis). NPs and other constituents
may also be parsed by invoking parse/i, giving as argument the grammatical category
(this will require a knowledge of PUNDIT'S grammatical categories). As a simple illustra-
tion, you may parse the noun phrase visual sighting of periscope by calling parse(inr).
Note, however, that parse(inr) does not support semantic analysis.

4.4 pundit

The pundit procedure provides a domain-specific front-end to the PUNDIT system, one
geared specifically towards full message processing. Since pundit is similar in many re-
spects to parse (see above), only differences will be described here.

First, pundit is not sensitive to the semantics and text.mode switches: it is assumed that
all messages require semantic analysis, and that all input will be oae or more sentences
of text. As a result, it is not possible to request multiple parses of the input. However,
if a sentence fails semantic analysis, pundit will backtrack for the next parse, and this
process will continue until a semantically acceptable parse is found.

Secondly, pundit provides a domain-specific message entry screen which collects the mes-
sage header and the message body. The screen for the MUCK domain is shown in Figure
(6) below (you may enter a question mark at any prompt to receive a description of valid
responses). The responses to the first four prompts are used to establish the discourse
context for the interpretation of the message body.

The pundit procedure also provides capabilities for processing one or more existing mes-
sages from the message corpus (stored in <domain> -working.pl). When you first invoke
pundit, the message corpus is compiled into your image, creating entries in the recorded
database10 . At the prompt for Message number, you may enter the number of an existing
message, and pundit will fetch the message from the recorded database and process it.
If you wish to process a list of existing messages, call pundit (batch,YourList), where
YourList is a Prolog list of message numbers. You may also process the entire message
corpus by calling pundit (batch, test-pundit) 1 .

'*If there is a version of the message corpus in your directory, pundit will load that; otherwis-., it will
load the file from the main domain directory. This feature allows you to maintain a personal corpus of

texts.
"This is the method which we use to test software changes: the output can be maved in a file and

compared against the results of testing a previous image.

4 COMMONLY USED PROCEDURES 14

%Znlp/pundit/muck/Muck. qimage +

Loading /usr/local/bin/em215 with /mn2/q2.2/ml...
Unix Prolog+Emacs V2.15 (01-Jan-88)
Copyright(c) 1986, 1987 Unipress Software, Inc.

Quintus Prolog Release 2.2 (Sun-3, Unix 3.2)
Copyright (C) 1987, Quintus Computer Systewi, Inc. All rights reserved.
1310 Villa Street, Mountain View, California (415) 965-7700

[consulting /mn2/cball/prolog. ini...]I
Setting selection switch unknown-selection to ------------ > succeed
[prolog.ini consulted 0.133 sec 720 bytes]

I - pundit.

[compiling /nlp/nlp/pundit/muck/muckvorking.pl...)
[muckworking.pl compiled 2.700 sec 12,612 bytes]

*~.~~************s****** RAINFORM MESSAGE ENTRY ****************ee

Message number E1) :11

Enemy platform [barsuk] :submarine
Reporting platform [virginia) :texas
Report time [0800t] :090Ot

Sighting message: sighted periscope an asroc was fired proceeded to
station visual contact lost, constellation helo hovering in vicinity.
sub appeared to be ooa.

Processing discourse segment...

Segment processing Time: 39.967 sec.

.***************************** Complete IDR ************************

(etc.)

Figure 6: Using the pundit procedure

4 COMMONLY USED PROCEDURES 15

4.5 punt

This procedure provides on-line documentation for several PUNDIT utilities: the Prolog
Structure Editor, the Lexical Entry Procedure, tools for creating a concordance, and the
Dictionary Merge utility. To invoke the punt utility, type punt at the Prolog prompt.

4.6 rdb.remove

This development utility removes entries of specified type(s) from the Prolog recorded
database. It is useful when testing changes to one of the files whose compilation creates
such entries. For example, the pundit procedure, as one of its steps, compiles the message
corpus into yotr -irrent image. If you should wish to edit and reload the message file
(<domain> -working.pl), you must first remove the old messages: rdb..remove facilitates
this task. A sample session is given below.

I ?- rdb-remove.

Recorded Database Rules:
1. The Lexicon (dict)
2. The Bnf (bnf)
3. Define and Simplification Rules (define) [obsoletal
4. Semantic Selection Rules (semantics) [obsolete]
5. Clause Mapping Rules (mapping) [obsolete]
6. Noun Phrase Mapping Rules (mapping-np) [obsolete]
7. All Semantics Rules (all-semantics) [obsolete]
8. The Selectional Patterns (selection)
9. The Stable Messages (messages)
10. quit
Please choose a list of items -- [9].

Erasing corpus muck...

Time to erase the testing messages: 0.15 sec.

Figure 7: Using the rdbremove utility

Note that options 3-7 are obsolete (semantics rules are not stored in the recorded database).

4 COMMONLY USED PROCEDURES 16

4.7 readIn

The procedure readIn/1 loads a PUNDIT lexicon into the current image. Its argument
is the name of a lexicon file. For example, to load the lexicon file my.lex,.pl from the

current working directory, execute the goal readIn(my-lex). Lexical entries are stored in
the recorded database; to avoid duplicate entries, it may be necessary to run rdb.remov.

to remove previous entries before using roadIn to load a new lexicon.

4.8 squery

The predicate squery/0 is used to control the behavior of the Selection component when
it encounters an unknown selectional pattern. Execute the goal squory to be queried
when an unknown pattern is encountered. For more details, see Section 12 of (Lang 87].

4.9 ssucceed

The predicate ssucceed/0 is analogous to squery/0, except that it is used to allow un-
known selectional patterns to succeed. There is also a predicate sfail/O which can be

used to force unknown selectional patterns to fail. For more details, see [Lang 87].

4 COMMONLY USED PROCEDURES 17

4.10 switches

The switches utility allows you to control the operation of PUNDIT. Each switch and its
dependencies are described in more detail below.

I ?- switches.

1. enterne..ord ---------------- > OFF
2. np.trace ---------------------- > OFF
3. parse-tree --------------------- > OFF
4. conjunction ----------------------------- > ON
5. semantics ---------------------- > OFF
6. translated..gramar.present --------------- > ON
7. translated.grammar.in.use ------- > OFF
8. grinder ---------------------- > OFF
9. text-mod ---------------------- > OFF
10. decomposition-trace ------------> OFF
11. summary ---------------------- > OFF

12. show-isr------------ ---------- > OFF
13. selection ------------------------------ > ON
14. enabledb-access ---------------> OFF
15. count ------------------------ > OFF
16. all-time ---------------------- > OFF
17. time-trace -------------------- > OFF
18. window-display ---------------- > OFF
Please choose a list of switches, or type "ok." -- [5,7,9].

Changed the switch: semantics ------------------------------ > ON

Changed the switch: translatedgrammar-inuse ---------------- > ON

Changed the switch: text-mode ------------------------------- > ON

Figure 8: Using the switches utility

Several related procedures are useful in this connection. The procedure status dis-
plays current switch settings; flip/i reverses the setting of one switch (for example,
flip(semantics)); turn-on/1 and turn-of f/1 turn a specified switch on and off.

4 COMMONLY USED PROCEDURES 18

4.10.1 enteranewword

This switch controls the behavior of PUNDIT when lexical lookup encounters a word which
is not in the lexicon and which cannot be analyzed by the Shapes module. If the input to
PUNDIT contains an unrecognizable word and this switch is off, lexical lookup will issue
the following error message:

No definition found for -- <UNKNOWN-WORD>

sertence failed ...

If the switch is on,you will be given the following options:

1. Respell word

2. Add dictionary entry

3. Word is a proper noun

4. Quit

Choose the first option if you have simply misspelled the word. If the word is a proper
name, you may choose the third option (but Do dictionary entry will be created). If
you choose to add a new dictionary entry, the Lexical Entry Procedure is invoked, and
you will be prompted to enter morphological and grammatical information, which may
be optionally saved in a file in your directory (consult [Riley 88] and [Linebarger 88] for
more detail). Note that the information collected will allow PUNDIT to proceed with the
syntactic analysis of the input, but may not be sufficient to enable semantic analysis: for
this, it may be necessary to add new semantics rules and/or update the knowledge base.

4.10.2 np-trace

This switch controls the display of Reference Resolution trace messages concerning the
creation of discourse entities. Turning this switch on will only have an observable effect if
the semantics switch is turned on as well.

4.10.3 parse-tree

This switch controls printing of the parse tree and the isR. The parse tree and IsR are
always computed whether this switch is on or not.

4 COMMONLY USED PROCEDURES 19

4.10.4 conjunction

This switch is one of several switches that cannot be switched. The switch will be on if
the conjunction meta-rule has been applied to the grammar, and will be off otherwise. If
this switch is off, and you want the grammar to include conjunction, run the procedure
gen.conj /0. After the meta-rule has been applied, the switch will automatically be turned
on. Since the meta-rule cannot be undone, the switch cannot subsequently be turned off.

4.10.5 semantics

Turn this switch on to enable semantic and pragmatic analysis of input; turn it off if
you wish only to parse. Only the parse procedure is sensitive to this switch: the pundit
procedure assumes that you want a full analysis of the input.

4.10.6 translated-grammar-present

The switch indicates whether or not the grammar has been translated into Prolog. The
switch is on in the software which accompanies this document, and cannot be turned off.

If at your site an image has been developed in which this switch is off, then the grammar
must be run interpreted. Running interpreted is slow, but it facilitates debugging and
rapid grammar changes. Turning the switch on will translate the grammar, which may
take a few minutes; after translation, you will be given the option to compile the resulting
Prolog code. You will normally want to do this, because the compiled translated grammar
provides the fastest parsing. The only reason not to do this is if you want to use the Prolog
debugger on the translated code, which is not advised. If at any time you want to compile
the translated grammar, compile the file translated-grammar.pl.

4.10.7 translated..grammar-in-use

This switch allows you to parse with the grammar translated (on) or interpreted (off).
Although the switch is off in the software which accompanies this document, you will
normally want it to be on (for the fastest parsing). The only reason to turn this switch off
is to make use of certain grammar debugging tools that are only available when interpreting
the grammar, such as grinding and counting.

4.10.8 grinder

This switch allows you to trace the application of grammar rules and restrictions, a de-
velopment feature which is only available when parsing with the grammar interpreted (if

4 COMMONLY USED PROCEDURES 20

you turn this switch on, the translated-grammarinuse switch will automatically be
turned off).

The facility is called grinder because it typically produces considerable output. To reduce
the amount of output, you may choose to trace only the application of specific grammar
rules or restrictions.

I ?- turnon(grinder).

Enter one of: [<what you want to grind on>],
off, or
all

** WARNING ** If you grind at all, you will automatically run interpreted.
Enter choice:

Figure 9: Setting the grinder switch

4.10.9 text-mode

This switch is used by the procedure parse. If it is on, you will be prompted to enter
a paragraph of text (one or more sentences followed by two carriage returns). Only the
first parse for each sentence in the paragraph will be processed. _- the switch is off, you
will be prompted to enter a single sentence, and you may step through all parses for that
sentence.

4.10.10 decomposition-trace

This switch allows you to monitor the course of semantic analysis: if it is on, a variety
of trace messages will be displayed, including the isR for each clause about to be pro-
cessed and the semantic representation of the input as it is built up. While the switch
was designed to facilitate development of semantics rules and the knowledge base, the
trace messages are also useful when diagnosing the source of an incorrect or unsuccessful
semantfc analysis. Note that decomposition-trace has no effect unless the semantics
switch is also on.

4.10.11 summary

This switch controls whether or not a domain-specific module is called to create a sum-
mary of the input text. Since summaries depend on the output of semantic analysis,
the semantics switch must be turned on. Note: the summary application has not been
implemented in the MUCK domain.

4 COMMONLY USED PROCEDURES 21

4.10.12 show-isr

This switch controls the display of the ISR; its effect depends on whether you are using
parse or pundit. If the switch is on and you are using the parse procedure, the incre-
mental tSR will be displayed for each node in the parse tree. This is useful for debugging
changes to the isR, but not recommended otherwise. Note that the parse-tree switch
must also be on in this case (when using parse, you cannot see the ISR without also
displaying the parse tree).

If you are using the pundit procedure and this switch is on, the ISR for each sentence
will be displayed after syntactic analysis and before semantic analysis. In this case, the
parse-tree switch need not be on.

4.10.13 selection

This switch controls whether or not the Selection module is invoked in the course of
parsing. If it is on, Selection will be called; if it is off, Selection will not be called. For
more details, see (Lang 87].

4.10.14 enable-db -access

This switch controls whether or not queries and assertions access the database defined for
the current domain. It is used by the procedures parse and pundit. If the switch is on,
domain-specific database definitions will be used to extract database relations from the
results of semantic analysis, and these relations will be displayed on your screen.

Dependencies: semantics must be turned on, and database relations must be defined for
the current domain (<domain> _db-structure. pl and <domain> _dbmapping. pl).

4.10.15 count

This switch should be left off.

4.10.16 alltime

This switch controls the display of the time relations segment of the IDR. If it is off, the
segment is labelled Important Time Relations and contains what are judged to be the
most prominent temporal relations discovered during temporal analysis of the input. If
it is turned on, the segment is labelled Complete Time Relations, and all the relations
that could be discovered are displayed. Turning this switch on will only have an observable
effect if the semantics switch is turned on as well.

4 COMMONLY USED PROCEDURES 22

4.10.17 time-trace

This switch allows you to monitor the course of temporal analysis. If it is on, informative
trace messages will be displayed about situation representations as they are constructed
by the Time component. Turning this switch on will only have an observable effect if the
semantics switch is turned on as well.

4.10.18 window-display

This switch should be left off.

A INSTALLING THE SYSTEM 23

A Installing the System

The PUNDIT system runs under release 4.3 of Berkeley UNIX and Quintus Prolog (cur-
rently release 2.2). Before installing PUNDIT, a /nlp partition should first be created;
this partition should contain the directory /nlp/nlp/pundit, where the core PUNDIT
components will be installed. Software for the MUCK domain will be installed in the
/nlp/nlp/pundit /muck subdirectory.

If these partitions and directories cannot be created, several absolute path names in PUN-
DIT code will require modification: the files and lines of code are listed below. Note that if
it is necessary to create alternative directories to those recommended, please ensure that
core PUNDIT files and domain-specific files are stored in separate directories.

FILENAME code
punt.pl : - asserta(home.dir("/nlp/nlp/pundit/ ")).
qprologl5.pl timeCom :- unix(shell('/mn2/AI/nlp/bin/timeCom')).

sem.edit.pl :- compile(' nlp/pundit/semod/correctForms .pl').

switches.pl compile.(nlp/pundit/count.on.pl').
switches.pl compil('nlp/pundit/coun1t.off.pl').
compilePundit pundit.directory('/nlp/nlp/pundit').
compileMuck muck-directory(' /nlp/nlp/pundit/muck').

We strongly recommend that the files in the PUNDIT home directory (and its subdirecto-
ries) be owned by a special user, and that the file protections be set in such a way that
only this special user can alter these files.

B BUILDING PUNDIT IMAGES 24

B Building PUNDIT Images

B.1 Building a Core PUNDIT Image

To create a core PUNDIT image, execute the following sequence of steps:

1. go to a directory to which you have write permission

2. type to the UNIX prompt the command
qprolog2.2 < /nlp/nlp/pundit/makePundit 12

Executing these steps will deposit in the current working directory a Prolog saved state
called Pundit. testimage, which is the core PUNDIT image.

B.2 Creating a Functional Core PUNDIT Image

The core PUNDIT image itself is not functional (i.e., it cannot be used to parse sentences),
and is only used to build the domain-specific images. If, however, a user wishes to make
a functional image from a core PUNDIT image, the following steps should be executed:

e Create a file containing the following Prolog code:

7 Turn on conjunction and. translate the grammar
gen.conj.

- translate.grammar(' /nlp/nlp/pundit/translatedgramar.pl').
compile('/nlp/nlp/pundit/tranlatedgrammar.pl').
compile('/nlp/nlplpunditmuckcompute-typeu.pl').

% These declarations are required for the Selection module
pundit.domain(core).

isa(nothingnothing).

semantic.type(nothing,nothing).

12 Instead of qprolog2.2, you should use whatever command is necessary at your site to start up the

current version of Quintus Prolog.

B BUILDING PUNDIT IMAGES 25

" Start up the core PUNDIT image and compile the file containing the code above.

" Save the resulting image (e.g., by executing the goal save-program(' Pundit. nevimag.').

Note that this image can be used only for parsing, since most of the procedures required
for semantic analysis (e.g. the knowledge base and semantics rules) are domain-specific.

B.3 Creating a Complete Domain-Specific Image

To create a complete domain-specific image (in this case, an image for the MUCK domain),
follow these steps:

" again, go to a directory to which you have write permission

" type to the UNIX prompt the command
/nlp/nlp/pundit /Pundit.oteastimage < /nlp/nlp/pundit /muck/makMuck. 13

Executing these steps will deposit in the current working directory a Prolog saved state

called Muck.testimago, which is the complete domain image. Once the above procedure
has been completed, either of these two Prolog saved states can be started up simply
by typing Pundit.test image or uck.testimago to the UNIX prompt (or by typing the
absolute filename, if the user is not in the directory in which these files are found). The

images can, of course, be renamed if desired.

1 3 This assumes that Pundit testisage is currently in the directory /nlp/n)p/pundit.

C CUSTOMIZING YOUR PUNDIT USER ENVIRONMENT 26

C Customizing Your PUNDIT User Environment

Because PUNDIT is written in Quintus Prolog, we can use one of its features to make
it easy to customize PUNDIT for individual use. When Prolog first starts up, it checks
in the user's home directory for a file named prolog. ini. If such a file exists, Prolog
will compile it into its current image. Using this feature, we can instruct Prolog to
automatically set PUNDIT switches to those settings that we find most convenient. In
Figure 10 is an example of one such prolog. ini. The example code first checks to see if
Prolog is running a PUNDIT image; if it is, switches are set to the desired settings (in this
case, to those most convenient for grammar development). Observe in particular that the
switch translatedgrammar-in-use is turned on only if translatedgrammar.present is
already on. At the end, a procedure is called which displays the current switch settings.

turn-on_initial-switchea: -
recorded(toggle ,svitches.are-def med,_),

(toggle (translatedgrammar-.present) ->
turn-on (translated_gr.-arin.use);
true),

turnon(parsetree),
turnoff (selection),
ssucceed,
turn-off(shov.isr),
turn-off (semantics),
turn.off(textmode), "

turn-off (sumary),
show-herald.

turn.on_ initialswitches.

- turn-on_ initial.switches.

Figure 10: Sample prolog.ini file

D PUNDIT FILES AND DEPENDENCIES 27

D PUNDIT Files and Dependencies

D.1 Files

Listed below are the core and domain-specific files which comprise the PUNDIT software
accompanying this document. By convention, domain-specific files are prefixed with the
name of the domain.

* Core Files

- Lexical

* dictisr.pl - the core lexicon

* entries.pl - the Lexical Entry Procedure

* lookup.pl - lexical lookup

* reader.pl - procedures to read input

* readin.pl - load or update the lexicon

* shapeo.pl - shape descriptors

* tables.pl - lexical entry options

- Syntax

* Grammar

• bnf.pl - bnf definitions
compile-types.pl - [created automatically]
compute-types .pi -compute atomic grammar nodes

conj restr. pl - grammar restrictions for conjunction

count-of f .pi - counting procedure
count..on.pl - counting procedure
counting.pl - procedures for grinding and counting
interprater.pl - grammar interpreter

1spops.pl - elementary restriction operators
meta.pl - meta grammar for conjunction

path.pl - navigate the parse tree
prune. pi - dynamic pruning of grammar options
restrictions .pl - restrictions

routines .pl - basic syntactic routines for grammar
translated.grammar.pl - [created automatically]
translator.pl - grammar translator
types, p - type definitions for grammar

update.pl - grammar update procedures

D PUNDIT FILES AND DEPENDENCIES 28

. xor p1 - ezclusive or mechanism for grammar options

* Intermediate Syntactic Representation
*computea.-trans. pl - compute ISR.

*isr.Jlexical.pl - isR information for terminal symbols

*isr.ops .pl - TsR operator definitions
*semproc p1 - Simplify ISR translation

*show-isr.pl - display procedures for the isa

* Selection

a select ion-dcg. pl - Selection DOG for analyzing ISR

*select ion-query. pl - Selection user interface

*select ion-restr. pl - restrictions which call Selection DCG
s elect ion-.tools. pl - Selection tools

*select ion-.top-level .pl - record and erase parsed sentences
s elect ionut ilit iea. pi - Selection utilities

- Semantics

" adjunct-analysis .pl - analyze sentence adjuncts

" f ilter.pl - prepare isR for semantic analysis
" np-int .pl - noun phrase semantics

" quantif iers .pl - quantifier binding procedures
" semantics.pl - the Semantic Interpreter
" world. p1 - general knowledge base procedures

-Pragmatics -

" discourse..rule . p1 - manage discourse and focus information
" np-.ext .p1 - Reference Resolution

" time.pl - Time Analysis

- Database Application

* entry -generator. pl - create database relations

- Utilities

* access .pl - ISR accessor functions

* edit.pl - Prolog Structure Editor

* qprologl5.pl - code specific to Quintus Prolog

* rdb..remove . p1 - remove entries from recorded database

* shov.pl - display TSR, IDa, db relations, etc.
* switches.pl - manage PUND)IT switches
* testing.pl - software testing utility (not for MUCK

* time-display.pl - temporal relations display procedures

D PUNDIT FILES AND DEPENDENCIES 29

" trace.mossages .pl - semantics trace messages

" utilities.pl - general-purpose procedures

" vax-menus.pl - menu facility

* vax.ahow.pl - top-level non-window display procedures

" ws-support.pl - windowing system procedures

- Other

" compilePundit - build a PUNDIT image

" demotop..oval.pl -

" opdof a. pl - operator declarations

" punt.pl - on-line PUNDIT help

" top_.level.pl - PUNDIT front-end

* Domain-Specific Files for the MUCK Domain

- Lexical

* muck.dictisr.pl - incremental lexicon

* muck.shapes .pl - shape descriptors

- Syntax

* Grammar

* compile-types.pl - [created automatically]
* muck-bnf .pl - updates to the core bnf file

* muck..restrict ions.pl - restrictions

* translatedgrazmmar.pl - [created automatically]
* Selection

m auck-selection-rb.pl - selectional patterns
* SELECTIONAL.PATTERNS.pl - [created automatically by Selection]

* USER-CORPUS.p1 - [created automatically by Selection]

- Semantics

* muck-rules .pl - semantics rules

* muck.orld.pl - the knowledge base

- Pragmatics

* muck-time.pl - temporal operators and rules

- Database Application

* muck-entry.gnerator.pl - customized version of core file

* muck-db.structure. p. - database definition

* muck-dL.mapping.pl - database mapping

- Summary Application

D PUNDIT FILES AND DEPENDENCIES 30

* muck..ummary.pl - create summaries (empty file)

- Other

* compileMuck - build MUCK image

* mucktop..level.pl - message entry front-end

* muck.orking.pl - message corpus

D.2 Dependencies

While most PUNDIT files can be loaded in any order, certain files and classes of files must
be loaded in a specific order for PUNDIT to run correctly. These ordering dependencies
arise for three main reasons:

1. Compilation of domain-specific files is designed to follow compilation of domain-
independent fies. For example, certain core procedures may be abolished and rede-
fined in a domain-specific file; if changes are made to the core file and it is recompiled
in a domain image, the domain-specific file must be recompiled as well.

2. Some of PUNDIT's data are stored in the Prolog internal database, and multiple
compilations of certain files will result in duplicate database entries. The relevant
files are: the core and domain-specific versions of the grammar and the lexicon
(bnf. pl and dictiar .pl), and the domain selectional patterns and message corpus.

3. Certain operations in PUNDIT are performed at compile time. These include meta-
rules for the grammar, translating the grammar, and computing the types of non-
terminals in the grammar. These-operations must be done in order.

If, in the course of development, you wish to compile a new version of the grammar, lexicon,
selectional database or message corpus, you must first remove the internal database entries
generated by the compilation of the previous version. This can be done most simply by
calling the procedure rdb-remove (see Section 4), which removes all database entries of a
specified type.

Compiling changes to selectional patterns: selectional patterns reside in two files:
<domain>_selectiondb.pl and SELECTIONALPATTERNS.pl. The latter is created au-
tomatically in any directory in which you have run a PUNDIT image with the selection
switch on, while the former resides in the main domain directory, is maintained by hand,
and is compiled into the standard domain image. f you wish to retain the selectional pat-
terns which were originally compiled into the image and to add your personai selectional
patterns, compile <domain>selection-db.pl and SELECTIONAL_-PATTERNS.pl, in that
order. Otherwise, compile only the relevant file.

Compiling changes to the message corpus: the message corpus is not compiled into
either the core PUNDIT image or the domain image; instead, it is automatically compiled

D PUNDIT FILES AND DEPENDENCIES 31

into your image when you first invoke the pundit command. Therefore, if you have
modified this file, you need not recompile it yourself. The system supports personal
versions of the corpus: if the file <domain>_-working.pl exists in the directory in which
you are running an image, that is the file which will ba compiled. If it does not exist, the
file in the main domain directory will be compiled.

Loading changes to the lexicon: multiple lexicon files exist. The core PUNDIT lexicon
(dictisr.pl) resides in the core PUNDIT directory and is incorporated into the core PUN-
DIT image; the domain-specific lexicon (<domain>_dictisr.pl) resides in the domain
directory and is incorporated into the domain imag,. Since domain images are built from
core images, a domain image contains lexical entries from both the core lexicon and the
domain lexicon, loaded in in that order. In addition, you may have one or more personal
lexicon files created by using the Lexical Entry Procedure. By running rdbxemove to
remove lexical entries, you will have removed all lexical entries, regardless of the file in
which they originated. You will now need to use the readIn procedure, and load the
relevant lexicon files in sequence.

Implementing changes to the grammar:

1. Read in new grammar file

2. Meta-Rules-run gen.conj /0.

3. Translate the grammar to Prolog-run translate-gragmar/l, whose argument is a
file name (generally translated-grammar.pl).

4. Compile the translated grammar-compile the file named above.

5. Compute the types of the grammar nonterminals-compile the file compute.types .pl.

These steps must be performed in the order listed, except that step 5 may be performed
any time after step 2. Step 2 may be skipped if you do not wish to parse sentences
containing conjunction. Skip both steps 3 and 4 if you wish to parse with the grammar
interpreted (at a significant performance loss). Generally speaking, you will always need
to recompile compute..types. pl.

Compiling changes to files which do not update the recorded database : certain
files exist in core and domain-specific versions (e.g. shapes.pl and <muck>_-shapes .pl).
The core versions reside in the core PUNDIT directory and are incorporated into the core
PUNDIT image; the domain-specific versions reside in the domain directory and are incor-
porated into the domain image. Since the domain image is built from the core image,
domain-specific files are compiled on top of core files. If you are working in a domain
image and have changed a file which exists in both core and domain-specific versions, you
will need to recompile both, in that order. Otherwise, simply recompile the relevant file.

E PUNDIT BIBLIOGRAPHY 32

E PUNDIT Bibliography

E.1 Background Reading

Dahl, Deborah A. The Structure and Function of One-Anaphora in English. PhD thesis,
University of Minnesota, 1984; Indiana University Linguistics Club, 1985.

Hirschman, L. Discovering Sublanguage Structures. In Kittredge, R. and Grishman,
R. (editors), Sublanguage: Description and Processing. Lawrence Erlbaum Assoc.,
Hillsdale, NJ, 1986.

Palmer, Martha. Driving Semantics for a Limited Domain. PhD thesis, University of
Edinburgh, 1985.

Palmer, Martha S. Semantic Processing for Finite Domains. To appear as a volume
in Studies in Natural Language Processing, Cambridge University Press, editor, Ar-
avind Joshi, 1988.

Sager, Naomi. Natural Language Information Processing: A Computer Grammar of
English and Its Applications. Addison-Wesley, 1981.

E.2 Papers and Presentations

Dal, Deborah A. Focusing and Reference Resolution in PUNDIT. In Proceedings of the
5th International Conference on Artificial Intelligence. Philadelphia, PA, August
1986.

Dal, Deborah A. Determiners, Entities, and Contexts. In Proceedings of TINLAP-3.
Las Cruces, NM, January 1987.

Dahl, Deborah, Dowding, John, Hirschman, Lynette, Lang, Fran~ois, Linebarger, Mar-
cia, Palmer, Martha, Passonneau, Rebecca, and Riley, Leslie. Integrating Syntax,
Semantics, and Discourse. Darpa Natural Language Understanding Program. R&D
Status Report, Unisys Defense Systems, May 14, 1987.

Dahl, Deborah A. Integration of Semantics and Pragmatics in the Computational Anal-
ysis of Nominalizations. Colloquium presented to the Department of Computer
Science, The Pennsylvania State University, October, 1987.

Dahl, Deborah A., Palmer, Martha S., and Passonneau, Rebecca J. Nominalizations in
PUNDIT. In Proceedings of the 25th Annual Meeting of the Association for Compu-
tational Linguistics. Stanford University, Stanford, CA, July 1987.

Dahl, D. Natural Language Processing for Database Generation: The PUNDIT System.
Paper presented at AI West, May, 1988, Long Beach California.

E PUNDIT BIBLIOGRAPHY 33

Dowding, John and Hirschman, Lynette. Dynamic Translation for Rule Pruning in
Restriction Grammar. In Proceedings of the 2nd International Workshop on Natural
Language Understanding and Logic Programming. Vancouver, B.C., Canada, 1987.

Grishman, R. and Hirschman, L. PROTEUS and PUNDIT: Research in Text Under-
standing. Computational Linguistics 12(2):141-45, 1986.

Hirschman, Lynette. Conjunction in Meta-Restriction Grammar. Journal of Logic Pro-
gramming 4:299-328, 1986.

Hirschman, Lynette. Natural Language Interfaces for Large Scale Information Process-
ing. Technical Advisory Panel Meeting for the Transportation Systems Center, De-
partment of Transportation. Boston, MA, May, 1987.

Hirschman, Lynette, Tutorial on Natural Language and Logic Programming. 1987 Logic
Programming Symposium, San Francisco, Aug. 31-Sept. 4, 1987.

Hirschman, L. A Meta-Treatment of wh-Constructions. To be presented at META 88
Workshop on Meta Programming in Logic Programming.

Hirschman, Lynette, Dahl, Deborah, Dowding, John, Lang, Franqois-Michel, Linebarger,
Marcia, Palmer, Martha, Riley, Leslie, and Schiffman, [Passonneau] Rebecca. The
PUNDIT Natural Language Processing System. Presented at the Eleventh Annual
Penn Linguistics Colloquium, Philadelphia, PA, February, 1987.

Hirschman, L., Hopkins, W.C., Smith, R.C. Or-Parallel Speed-up in Natural Language
Processing: A Case Study. To be presented at the 5th International Logic Program-
ming Conference, Seattle, August, 1988.

Hirschman, L. and Puder, K. Restriction Grammar in Prolog. In Proceedings of the First
International Logic Programming Conference, pages 85-90.

Hirschman, L. and Puder, K. Restriction Grammar: A Prolog Implementation. In War-
ren, D.H.D. and Van Caneghem, M. (editors), Logic Programming and its Applica-
tions, pages 244-261. Ablex Publishing Corp., Norwood, NJ, 1986.

Lang, Fran ois-Michel and Hirschman, Lynette. Improved Portability and Parsing through
Interactive Acquisition of Semantic Information. In Proceedings of the Second Con-
ference on Applied Natural Language Processing. Austin, TX, February 1988.

Linebarger, Marcia C., Dahl, Deborah A., Hirschman, Lynette, and Passonneau, Re-
becca J. Sentence Fragments Regular Structures. In Proceedings of the 26th Annual
Meeting of the Association for Computational Linguistics. Buffalo, NY, June 1988.

Palmer, Martha S., Dahl, Deborah A., Passonneau, Rebecca J., Hirschman, Lynette,
Linebarger, Marcia, and Dowding, John. Recovering Implicit Information. In Pro-
ceedings of the 24th Annual Meeting of the Association for Computational Linguis-
tics. Columbia University, New York, August 1986.

E PUNDIT BIBLIOGRAPHY 34

Palmer, Martha, and Linebarger, Marcia. Status of Verb Representations in PUNDIT.
Presented at Theoretical And Computational Issues in Lexical Semantics, Brandeis
University, Waltham, Mass, April 21-24, 1988.

Palmer, Martha, Hirschman, Lynette, and Dahl, Deborah. Text Processing Systems.
June 1988. Tutorial presented at the 26th Annual Meeting of the Association for
Computational Linguistics, Buffalo New York.

Passonneau, Rebecca J. Situations and Intervals. In Proceedings of the 25th Annua
Meeting of the Association for Computational Linguistics, pages 16-24. 1987.

Passonneau, Rebecca J. A Computational Model of the Semantics of Tense and Aspect.
Computational Linguistics (forthcoming), 1988.

E.3 Technical Documentation

Ball, Catherine N., Dahl, Deborah A., Dowding, John, Hirschman, Lynette, Linebarger,
Marcia, Palmer, Martha, and Passonneau, Rebecca. PUNDIT Tutorial Notes. In-
ternal document, Unisys Corporation, 1987.

Lang, Francois-Michel. A User's Guide to the Selection Module. LBS Technical Memo
68, Unisys Corporation, 1987.

Linebarger, Marcia C. A Guide to Object Optio,.. in PUNDIT. Technical Report, Unisys
Corporation, 1988.

Riley, Leslie. A Guide to the PUNDITLezical Entry Procedure. Technical Report, Unisys
Corporation, 1988.

Riley, Leslie and Dowding, John. The Pyolog Structure Editor. LBS Tc-hnical Memo 29,
Unisys Corporation, 1986.

Schiffman (Passonneau), Rebecca J. Designing Lexical Entries for a Limited Domain.
LBS Technical Memo 42, Unisys Corporation, April 1986.

I.

REFERENCES 35

I References

(Dahl 84] Dahl, Deborah A. The Structure and Function of One-Anaphora in En-
glish. PhD thesis, University of Minnesota, 1984.

[Lang 87] Lang, Francois-Michel. A User's Guide to the Selection Module. LBS
Technical Memo 68, Unisys Corporation, 1987.

[Linebarger 88] Linebarger, Marcia C. A Guide to Object Options in PUNDIT. Technical
Report, Unisys Corporation, 1988.

[Passonnea.u 871 Passonneau, Rebecca J. Situations and Intervals. In Proceedings of the
25th Annual Meeting of the Association for Computational Linguistics,
pages 16-24. 1987.

(Riley 86] Riley, Leslie and Dowding, John. The Prolog Structure Editor. LBS
Technical Memo 29, Unisys Corporation, 1986.

[Riley 88) Riley, Leslie. PUNDIT Lexical Entry Procedure User's Guide. Technical3 Report, Unisys Corporation, 1988.

[Sager 81] Sager, Naomi. Natural Language Information Processing: A Computer3 Grammar of English and Its Applications. Addison-Wesley, 1981.

I
I

I
I
I
I
I

I

I
I
I
I
U

PUNDIT
U Lexical Entry Procedure

U User's Guide*
I
* Version 1.1

November 21, 1988

I
I
I
3 Unisys Logic-Based Systems

Paoli Research Center
I P.O. Box 517, Paoli, PA 19301

'This work has been supported by DARPA contract N00014-85-C-0012, administered by the Office of Naval5 Research.

I
i

Contents

1 Introduction I

1. 1 Features. 1

1.2 Limitations. 1

2 Getting Started 1

2.1 How to access the LEP 1

2.2 General conventions 3

2.2.1 Meta-responses 3

2.2.2 Defaults. 3

2.2.3 Menus. 3

3 Defining New Words 5

3.1 Before You Begin 5

3.2 Initial Prompts 5

3.3 Word Glasses. 7

3.3.1 Nouns. 7

3.3.2 Proper Nouns. 8

3.3.3 Verbs. 9

3.3.4 Adjectives. 11

3.3.5 Adverbs. 11

3.3.6 Determiners i

3.3.7 Quantifiers. 12

3.3.8 Prepositions 12

3.4 Completing the Lexical Entry Process. 12

4 Beyond Lexical Entry 12

4.1 Testing Your Lexical Entries Before Exiting the Image 13

4.2 After Exiting 14

A Verb Complement Types 16

I

* 1 Introduction

1 1.1 Features

The Lexical Entry Procedure (LEP) has been designed to provide consistency, completeness, and
speed of entry for new words. The procedure elicits relevant linguistic information from the user,
computes dependencies between attributes, and prompts for morphologically related forms (offer-
ing a "guess" as to the correct form). The program then automatically creates a set of related
dictionary entries, with as much structure-sharing among the entries as possible. Before the entries
are actually entered in the database or written to a file, the user may inspect and edit any entries
created.

3 1.2 Limitations

The LEP is a tool which relieves the user of some, but not all, of the burden of maintaining a
lexicon. In its current version, it can only be used to add new lexical entries, and cannot be used
to revise, delete, or display existing lexical entries. Furthermore, it does not directly access a
lexicon: rather, it adds lexical entries to the Prolog database in a running image, and optionally
copies them to a temporary file. The user must move the entries from the temporary file(s) created3 by the LEP to the appropriate lexicon.

What this means to you, as a user, is that you will need to become familiar with the LEP (as
documented in this Guide), and you will also need to understand the tools for editing and deleting
raw lexical entries. This in turn means that you will need to understand the structure and content
of lexical entries in the form in which they are stored in a lexicon, for example (for the word dog):

:(dog,root:dog, [n: [Ilsingular) ,II: [ncountil])

:(do sroot:dog.n:11 .plurall)
:(dog's,root:dog, [ns: [1i,singular])3 : (dogs' ,root:dog. Ens: E I,plural])

To help you with this task, we have included a number of sample lexical entries created by the
LEP, and have included a brief section on what to do when you have completed the LEP.

2 Getting Started

2.1 How to access the LEP

The LEP may be run by itself, or may be called automatically whenever PUNDIT encounters an
unknown word.

3 Standalone

Simply type the command lep. at the Prolog prompt in a PUNDIT image. You will be
prompted for the word whose definition you wish to add.

I ii I H
i

i 1

* During text processing

If you have set the PUNDIT switch enternewword1 to on, the LEP will be invoked automat-
ically whenever PUNDIT encounters an unknown word in its input. When this happens, you
will be given the opportunity to respell the word, to add the word to the lexicon, or to abort
processing. If you chose to add the word, the LEP will be invoked. After you have completed
the LEP, your definitions will be added to the image, and PUNDIT will resume processing with
the new definitions.

The transcrript below illustrates the first two options: respell and add. The input is
Ticonderoga attaked, where attaked is a misspelling, and ticonderoga is a proper name
which is not in the lexicon. The actual prompts which come up during lexical entry will be
discussed in detail shortly. For now, observe that in the illustration, PUNDIT has successfully
parsed the input after the spelling error was corrected and ticonderoga was defined.

I ?- turmnon(enter-new-word).

yes

I ?- parse.

sentence: ticonderoga attaked.

No Lexical Entries found for: ticonderoga

Choose one of the following items

1. respell 2. add 3. abort

Lexical Entry option: add

Defining the lexical entries for 'ticonderoga'.

Output to a file? [yes] :

Entries will be saved in the file mucklexicon.pl.151ov1966

Root form [ticonderoga]:
Other spellings [none]:
Word classes: name

Defining 'ticonderoga' as a proper noun

Singular possessive [ticonderoga's]:

The following lexical entries have been created:

: (ticonderoga,root : ticonderoga, [proper: [J])

For more information on PUNDIT switches, please consult (Ball 881.

2

=

I

I :(ticonderoga's,root:ticonderoga, Ens: [ii.singular)])

Enter? :yes

No Lexical Entries found for: attaked

3 Choose one of the following items

1. respell 2. add 3. abort

5 Lexical Entry option: respell

respell: attacked

3 continuing processing with respelled word(s) -- [attacked]

I 2.2 General conventions

3 2.2.1 Meta-responses

All LEP prompts accept meta-responses, which begin with the special character '@' and end with
a period.

* *help. - ask for help.

m Qhelp(<ITEM>). - ask for help on a menu item.

* Cquit. - abandon the current definition.

3 . *prolog(<PROLOG COMMAND>). - execute Prolog command.

2.2.2 Defaults

Many of the prompts in the LEP offer defaults. In a menu, the default is marked with an asterisk;
otherwise, the default is enclosed in square brackets. To accept a default, press the RETURN
key. Otherwise, enter your response. In the following example, the user has overridden the default
plural form for goose, but accepted the default singular possessive form.

Plural form (gooses]: geese
Singular possessive [goose's]:

m 2.2.3 Menus

Certain prompts require a response from a fixed list of choices; these choices are shown as a menu
m when you ask for help. There are two basic types of menus: those from which you can select only

3

one item, and those which allow you to select multiple items. The menu title will indicate which
i- the case.

If the menu requires a single item as a response, you may enter either the number of the item, or
the name of the item. If the menu allows multiple items, you may enter the numbers or the names,
separated by commas. In the following example, the user is selecting the word classes for the word
fool, which is both a noun and a verb:

Word classes: thelp.

Choose one or more of the following

1. noun 2. name 3. verb
4. adjective 6. adverb 6. determiner
7. quantifier 8. preposition

Select: noun,verb

Note that the user could also have entered 1,3 instead.

4

U

3 Defining New Words

3.1 Before You Begin

The LEP assumes that you are adding new lexical entries, and it does not check to ensure the
entries are not already in the image you are running. If you want to be able to test your entries
by parsing with them in this image, you should first verify that the word you wish to enter is notIalready defined. Do this by using the procedure edit-word, giving your word as argument. If
the word has already been defined, this procedure will display the existing lexical entries. If you
intend to completely replace them, delete each one. If you are sufficiently proficient, you can use
edit-word to make any necessary revisions instead of using the LEP (but there will be no externa!
record of your revisions).

If your word has not already been defined, or if you are not concerned about creating duplicates,
proceed with the LEP.

3.2 Initial Prompts

The first five prompts in the LEP are common to all lexical entries:

****************************** Lexical Entry ******************************

Word: fool

Defining the lexical entries for 'fool'.

Output to a file? Eyes] :

Entries will be saved in the file muck-lexicon.pl.lSNov1956

Root form [fool]:
Other spellings [none]:
Word classes: noun,verb

* Word

Enter the word which you wish to add. What you enter will serve as the default for the Root
form prompt, but plays no other role at present. The LEP is designed entirely around root
forms.

* Output to a file?

Answer yes if you wish to save your definitions into a file in the current working directory
(the name of the file is automatically generated). If you answer no, your definitions will be
recorded in the image you are running, but there will be no external record. In short, your
definitions will be lost when you exit the image.

5

" Root form

The root is the most basic form of the word in the same grammatical category. If the word
is a verb, the root is the infinitive form; if the word is a noun, it is the singular form. it tne
word you are defining is an abbreviation, enter the full form (e.g. for lb, enter pound). If the
word is a variant spelling, enter what you consider to be the standard spelling. Otherwise,
the root form is generally identical to the word itself.

Special problems arise when you need to define the root form of an acronym (e.g. unodir for
unless otherwise di.-cted) or a root which contains hyphens (anti-aircraft), or an idiomatic
phrase (go sinker). These are all treated as 'multi-word expressions', and this version of the
LEP cannot handle them. You will need to consult with a PUNDIT expert to determine how
to enter them (manually) into a lexicon.

" Other spellings

Here, you can specify any variant spellings or abbreviations for the root, such as sep,sept for
september, or archaeology for archeology.

It is important to note that these are other forms of the root. Special problems arise when
you wish to define a:. Tbbreviation for a non-root form, for example clearng as an abbreviation
for clearing, or lbs for pounds. The LEP cannot hanc I,- 'hese cases, and you will need to consult
with a PUNDIT expert.

" Word classes

Enter the part(s) of speech of the root. For example, if the root can be both a noun and a
verb, enter noun,verb.

The next sections cover major word classes and their features in detail. The diagram below shows
the features and morphological information which are collected for each word class. Items enclosed
in { } are optional, while items enclosed in < > reflect information that the user may or may not
be asked to provide, depending on previous choices.

6

I
I
I

DETERMINER QUANTIFIER NOUN ADJECTIVE VERB ADVERB PREPOSITION
I I I I II

I I II

Singular vs. {clausal complements) () [)
IPlural

I I

Mass vs. Singular vs. 1. <plural form>

SI I
I I i-----

Countit lural 2 pposestv forms

Definite vs. Singular vs. Complement Types 1. 3rd person singular
Ind-finite Plural 2. past tens

3. past participle
]4. present participle

<prepositions> <particles>

I 3.3 Word Classes

1 3.3.1 Nouns

A noun is first classified as mass or count. If the noun is a count noun, the LEP prompts for number
information and plural form (it is assumed that the root is singular). For both count and mass
nouns, you will then be asked to specify the possessive forms. Sample definitions for woman (a
count noun) and mud (a mass noun) are given below.

3 Word classes: noun

Defining 'woman' as a noun

I Count/mass (count):
Number [singular]:
Plural form [womans): women

Singular possessive [woman's]:

Plural possessive [womans'): women's

I
I7

I
Um lIIIIImillIl i

The following lexical entries have been created:

(wcn roeot wnman, En: El 1.singular] , 11: [ncounti])
:(bomen, root: woman, En: [1i. plural] I)
:(voman's.root:womanns:[11.singular])
:(somen's.root:womanns:[11,plural])

Enter? :yes

Note that there is a lexical entry for each morphological variant. Each lexical entry consists of the
citation form, followed by the root form, followed by a list of lexical classes and their attributes.
This is data which is intended to be recognized by the parser. In the first entry, n indicates a noun,
and ncount indicates a count noun. In the entries for woman's and women's, ns indicates possessive.
The occurrence of [11. . . in the entries is a pointer to the basic feature 11: [ncountil in the
first entry, where the root is classified as a count noun. You may find it enlightening to consult
[Fitzpatrick 81] for a more detailed discussion of word classes such as ncounti in the context of a
related system.

A sample definition for the mass noun mud:

Word classes: noun

Defining 'mud' as a no_-

Count/Mass [count]: mass
Singular possessive Emud's]:

3.3.2 Proper Nouns

You will be asked to specify the singular possessive form. Example:

Word: philadelphia

Defining the lexical entries for 'philadelphia'.

Output to a file? Eyes] :n
Root form Ephiladelphia]:
Other spellings [none]: philly,phila
Word classes: name

Defining 'philadelphia' as a proper noun

Singular possessive Ephiladelphia's]:

Note that the name has been entered in lowercase letters. If it had been capitalized, the LEP input
reader would have converted it to lowercase anyhow. This is because PUNDIT in general converts
all input to lowercase letters, so it would be useless to allow the distinction to be made in the
lexicon.

8

I

3.3.3 Verbs

Defining the characteristics of a verb is perhaps the most daunting of all lexical entry tasks.
PUNDIT requires very detailed information about what types of complement a verb can take, and
what prepositions and particles the verb requires. This information is necessary to get correct
parses and avoid incorrect parses, but it is difficult to specify. Many of the distinctions amongst
complement types may be obscure to the non-linguist, but they are all significant. You may find
it useful to consult a dictionary such as Longman's for guidance. Since it requires a great deal of
thought to determine the complement types of a verb, you may find it most efficient to work this
out on paper, before using the LEP to record your decisions.

We have tried to simplify the task of specifying the complement types of a verb by offering three
different menus: a menu for transitive uses of the verb, a menu for intransitive uses of the verb,
and a menu for verbs which take clausal complements. The items in each menu are numbered, and
you must choose one or more items by number.

Within each menu, you will be shown first the String Grammar name for the complement type,
and then a short description. You may request help on any item by typing thelp(NUMBER)., where
NUMBER is the number of the item on the menu. The help messages give examples of verbs which
take this complement type, and some criteria for making a decision. All of the complement types
are discussed in more detail in [Linebarger 88], which is attached as an appendix to this guide.

After you have specified the complement types, you will be asked about tense and participial forms
of the verb. A sampie definition for the verb thirk is shown on the following pages.

I Word classes: verb

Defining 'think' as a verb

Takes a clausal complement? :yes

Choose clausal complement types, by number:
1. tovo - infinitival complement, raising-to-subject

2. eqtovo - infinitival complement, subject-controlled equi
3. objtovo - noun phrase + infinitival complement, object-controlled equi

4. ntovo - noun phrase + infinitival complement, raising-to-object

5. thate - 'that'-clause
6. assertion - 'that'-clause, but 'that' is optional

7. nthats - noun phrase + 'that'-clause
8. pnthats - prepositional phrase + 'that'-clause

9. evo - tenseless clause with no complementizer
10. cishould- 'that'-clause + subjunctive

11. pnthatsvo - prepositional phrase + cishould
12. snwh - indirect question

13. nsnwh - noun phrase + indirect question
14. sven - predicative 'small clause'

15. sobjbe - small clause with subject

16. dpsn - particle + clause
Clausal complement types: 5,6,15

9I
I

Transitive? :y

Choose transitive complement types, by number:
1. nstgo - noun phrase (simple transitive verb)

2. npn - noun phrase + prepositional phrase
3. pnn - prepositional phrase + nnun phrase
4. nn - double object dative
S. na - noun phrase + adjective phrase
6. dp2 - particle + noun phrase
7. dp3 - noun phrase + particle
8. dp2pn - particle + noun phrase + prepositional phrase
9. dp3pn - noun phrase + particle + prepositional phrase

Transitive complement types: 6,7

Intrnsi~¢ ":y

Choose intransitive complement types, by number:
1. nullobj - no complement (simple intransitive verb)

2. pn - prepositional phrase
3. astg - adjective
4. dstg - takes specific adverbs
5. dpi - particle
6. dplpn - particle + prepositional phrase

Intransitive complement types: 1,2

Predicative verb? [no] :

Prepositions for the PN complement: about
Particles for the DP2 complement: up

Particles for the DP3 complement: up

3rd person singular [thinks]:

Past tense [thinked]: thought
Past participle [thought]:
Present participle [thinking]:

The following lexical entries have been created:

(think,root:think, [v: [12) ,tv: [12,plural],
12: [objlist: [nullobj ,thats,assertion,sobjbe,pn: [pval: [about]],

dp2: [dpval: [up]) ,dp3: [dpval: [up)]])
:(thinks,root: think, [tv: [12, singular]])
:(thought,root:think, [tv: [12,past) ,ven: [14),

14: [12,pobjlist: [assertion,objbe,thats,dpl: [dpval: [up]],

p: [pval: [about)))]])
:(thinking,root:think, [ving: [12)])

Enter? :yes

10

I
I

3.3.4 Adjectives

For adjectives, PUNDIT needs to know whether the adjective can take a clausal complement; if it
can, which of four complement types. Help is available on each.

e ordinary

Takes a that-clause as a right modifier, e.g. I am glad that she won, and the syntactic

subject of the sentence is also the logical subject. The String Grammar name for this class
of adjective is asent3 (this is what you will see in the lexical entry created).

e extraposition

It... adjective that..., e.g. It is obvious that he is tired.. The logical subject is the that-clause,
which appears to have been extraposed to the right, leaving it behind. For adjectives of this
type, there will oiten be acceptable versions with and without extraposition: It is obvious
that he is tired and That he is tired is obvious. The String Grammar name for this class of
adjective is asenti.

* equi

Like the ordinary complement type, except that the clause is infinitival instead of a that-
clause, and the subject of the sentence is also the understood subject of the infinitive. Ex-
ample: Bill is eager to please, which means thit Bill wants to do the pleasing. The internal
name for this class of adjective is aasp: [equi.adj].

* raising

Like extraposition, except that the clause is infinitival, and the subject appears to have
been raised out of the clause. Example: She is certain to be re-elected. The logical subject
is the clause, with the syntactic subject put back into it: That she will be re-elected is
certain, It is certain that she will be re-elected. The internal name for this clas of adjective
is aasp: [raising.adj].

3.3.5 Adverbs

No special information is collected for adverbs.

3.3.6 Determiners

Determiners (articles) are classified according to definiteness and number: for example, a is in-
definite and singular, while the is definite and both singular and plural. A sample definition for
another, which is indefinite and singular:

Word classes: determiner

Defining 'another' as a determiner

Definiteness: indefinite

lumber [singular]:

11I
I

3.3.7 Quantifiers

Quantifiers are classified according to number. A sample definition for many is given below:

Word classes: quantifier

Defining 'many' as a quantifier

Number [singular]: plural

3.3.8 Prepositions

No special information is collected for prepositions.

3.4 Completing the Lexical Entry Process

After the LEP has collected all attributes of the root, it will display the lexical entries created, and
you will be asked whether you wish to enter them. If at this point you realize that you have made
an error in lexical entry, you can simply type Cquit. and start over again - nothing has yet been
saved to a file or added to the Prolog database.

If you answer yes, the entries will be recorded in the current image (and written to a file, if you
so specified). You will then be given the opportunity to define more words.

If you answer no, you will be shown each of the entries created, one at a time, and you may choose
to enter it, ignore it, or edit it. At this point you can also quit and start over again. Note that no
action is taken until one of these choices is made for each of the entries. If you choose ignore, the
entry will be thrown away. If you choose edit, you will enter the Prolog Structure Editor. This
is a tool which requires some expertise, since you will be directly editing the raw lexical entry -
consult [Riley 86] for more details. If you get into the Structure Editor by mistake, type ? to see
the options - one of these will be a to abort.

4 Beyond Lexical Entry

If you answered yes to Output to a file?, the lexical entries you created will now be in a
temporary file in your directory, and you will need to eventually move them into the appropriate
lexicon file. This must be done manually.

Before you move your lexical entries to a more permanent home, however, it is advisable to test, by
devising test sentences and using PUNDIT to parse them. In the sections which follow, we describe
how to test and correct errors at three different stages: before exiting your current image. after
exiting the image but before moving the entries to a lexicon, and after moving the entries. The
well-known rule applies here: the earlier you detect an error, the easier it is to fix it.

12

I
I

4.1 Testing Your Lexical Entries Before Exiting the Image

After you have completed the LEP, the lexical entries which you created have been stored in the
Prolog database and are thus available to the PUNDIT parser. This is the most convenient stage at
which to test the correctness and completeness of your entries.

Before you begin parsing, there are at least three PUNDIT switches you may wish to adjust:
textmode, parse-tree and semantics. Turn the text-mode switch off - this will enable you
to obtain all the parses for your input. Turn the parse-tree switch on - so that you can see
exactly how PUNDIT has analyzed your input. The semantics switch you may wish to turn off: if
you have defined a verb, semantic analysis will not work properly until you have also defined the
semantics rules for the verb; if you have defined a noun, semantic analysis will not work properly
until you have defined the corresponding concept in the knowledge base.

As a result of testing, you may find that some aspect of your lexical entry was incorrect or incom-
plete. At this point there are several ways in which you can correct your error.

1. Exit the image and start all over again from scratch.

2. Use edit-word to delete the entire set of lexical entries from the Prolog database, and use
the LEP to redefine them.5 3. Use edit-word to revise the offending lexical entries. This option is not recommended for
novices.

[Riley 861 explains how to use edit-ord, but here is a simple example showing how to delete all

the lexical entries for a given root.

I ?- edit.word(dog).

Editing a set of words with the same root

Word 1: :(dog,root:dog,[n:Ell,singularl.11:Encountl])

Word 2: :(dog'sroot:dogEns:Eli.singular]])
Word 3: :(dogs,root:dog,(n:Cli,plural]])
Word 4: :(dogs',root:dog,[ns:Ell,plural)

Command: d4

Word number:4 is marked to be deleted You may no longer edit it.

Editing a set of words with the same root

Word 1: :(dog,root:dog,[n:E[l,singular].,l:[ncountl l)
Word 2: :(dog's,root:dog.Ens:CIlsingularJ])

Word 3: :(dogs,root:dog,En:E[lpluralJ])
Word 4: :(dogs',root:dog.Ins:Ellplural])

Command: d3

I Word number:3 is marked to be deleted. You may no longer edit it.
Editing a set of words with the same root

Word 1: :(dog,root:dog,[In:[11,singular],11:[ncount)])3 Word 2: :(dog's,root:dogCns:rlsingular])

13

I
I

I

Word 3: :(dogs,root:dog,En:[11.plural)]) I
Word 4: :(doges',root:dog,[ns:[l.plural]])
Command: d2 I
Word number:2 is marked to be deleted. You may no longer edit it.
Editing a set of words with the same root
Word I: :(dog,root:dog,[n:E11,singular],i:Encountl3))

Word 2: :(dog'sroot:dog,Cns:[11,singular]j) 1
Word 3: :(dogs,root:dog,[n:[ll,plural]])
Word 4: :(dogs',root:dogEns:[1l,plural]])
Command: dl

Word number:l is marked to be deleted. You may no longar edit it.
Editing a set of words with the same root
Word 1: :(dog,root:dog,[n:Ell,singularl11:ncountlj) 1)
Word 2: :(dog'a.root:dogEns:[ll,singular]3)

Word 3: :(dogs,root:dog,(n:Ell,plural]])

Word 4: :(doga',root:dog,Ens:Ell,plural]I) I
Command: t

Do you want to delete: :(dog,root:dog,n:Cl1,singular,l1:[ncountlJ).

Enter Jy) or 'n': y

Do you want to delete: :(dog's,root:dog,Ens:[IsingularJ]).

Enter Iy or 'n': y I
Do you want to delete: :(dogs,root:dogEn:Ill,plural)).
Enter 'y' or 'n': y 3
Do you want to delete: :(dogs',root:dogEns:Ell,plural]).
Enter 'y' or 'n': y

4.2 After Exiting

After you have exited from the image in which you were using the LEP, your entries will now reside m
only in the temporary file created by the LEP. At this point you may wish to test them (if you
have not already done so), or you may wish to load them into an image for some other purpose.

To load your lexical entries from a file into an image, use the procedure readln, whose argument I
is the name of the file containing your lexical entries. For example:

I ?- readIn('muck-lexicon.pl.18ov1918').

If, however, some of your lexical entries are intended to replace definitions which are already in
the image, you should first remove the old lexical entries. To do this, you can use edit-word and
delete them one at a time. Or if you are not sure which words are already defined, you can remove
all lexical entries from the image by using the procedure rdb.remove(dict) (see [Ball 88] for more
information). 3

14

I
I

If you discover errors in your lexical entries at this stage (that is, while your entries are still in a
temporary file created by the LEP), you can simply remove the temporary file, delete the entries
from your image (using edit-word) and use the LEP to re-enter your definitions.

You may also discover errors in lexical entries after they have been moved to a lexicon file, and
that file has been used to build an image. If the image is your own personAl image, you can simply
rebuild it after fixing the problem (and updating the lexicon). If the image is shared, you may
need to follow whatever system administration procedures obtain at your site.

References

[Ball 88] Ball, Catherine N., Dowding, John, Lang, Francois-Michel, and Weir, Carl. PUN-
DIT User's Guide. Technical Report, Unisys Corporation, 1988.

[Fitzpatrick 81] Fit-"t trick, Eileen ;%nd qager, Naomi. Appendix 3: The lexical subclasses of the
LSP String Grammar. In Sager, Naomi (editor), Natural Language Information
Processing: A Computer Grammar of English and Its Applications, pages 322-374.
Addison-Wesley, Reading, Mass., 1981.

[Linebarger 88] Linebarger, Marcia C. A Guide to Object Options in PUNDIT. Technical Report,
Unisys Corporation, 1988.

[Riley 86] Riley, Leslie and Dowding, John. The Prolog Structure Editor. LBS Technical
Memo 29, Unisys Corporation, 1986.

15

PUNDIT
Lexical Entry Procedure

Mini-release Notes*

Version 1.2

December 14, 1988

Unisys Logic-Based Systems
Paoli Research Center

P.O. Box 517, Paoli, PA 19301

*This work has been supported by DARPA contract N00014-85-C-0012, administered by the Office of Naval
Research.

I
I

The Lexical Entry Procedure (LEP) was extensively revised in Version 1.1 to improve ease of use by
non-experts. In addition, minor bugs were corrected, and several obsolete prompts were removed.

In Version 1.2, a new lexicon display facility has been added, and the Lexical Entry Procedure has
been extended to allow the entry of 'multi-word expressions'. These changes are described below.

I i1 Lexical Display

In order to make the PUNDIT lexicon accessible to the ordinary user, a lexical display facility has
been developed. In this version of PUNDIT, the display is accessed by the SRE, and can also be run
stand-alone, using the following Prolog commands:

o . lex-display.all.

Use this command to display the entire lexicon in the current image.

e lex-display -all (WordClass).

Use this command to display the definitions of all words in a specified word class. For
cxz=npie, to di.splay all the verfos in the current lexicon, type:3 lex.display.all(verb)

a lex-display (Word).

Use this command to display the definition for a single word. If the word is a root form
(for example, the infinitive of a verb or the singular form of a noun), all the variants of the
root form will be displayed. Otherwise, only information for the particular word form will
be displayed.

For example, the display for the root form attack

attack [noun,verb]
n. count singular; pl. attacks; sing. poss. none; pl. poss. none

v. present sing. attacks, pl. attack; past attacked
past part. attacked; pres. part. attacking

nstgo - They attacked it

npn - They attacked it [with] something
Vi.

nullobj - It attacked
pn - They attacked Con] something

SThe display for the non-root form attacked:

attacked (root: attack) [verb]1 v. [past,past. part]

I
!1

I

The displays show the definition of a word in what is intended to be a helpful and legible format,
using essentially the same terminology as the Lexical Entry Procedure. For verb complement types
(such as nstgo in the example above), templates are used to generate example sentences. Into
these templates are inserted the past tense form of the verb (e.g. attacked) and any prepositions
or particles which were specified. The latter appear in brackets in the examples (e.g. [with] was
specified as the valid preposition for the npn complement of attack).

The current PUNDIT lexicon contains a number of lexical integrity problems: for example, some
words have roots which are undefined; some verbs have invalid complement types; some entries
have typing errors which make the entry unreadable to the display procedure. When one of these
conditions is encountered, the display procedures print out a generic error message. The actual
error can be pinpointed (if desired) by running the lexicon integrity checker, which has been
separately developed and documented.

Please be aware that this version of the lexical displays is incomplete and deficient in several
respects. We are only displaying information in the lexicon which the Lexical Entry Procedure
understands, and it turns out that this is a subset of the actual information in the PUNDIT lexicon.
In addition, we are currently unable to provide the correct treatment of words which have more
than one root form, and we are not showing 'other spellings' of words. The next version of the
displays will remedy these shortcomings.

It still remains possible to obtain a display of the raw physical database, if you wish. Two PUNDIT

procedures exist which may be used for this purpose:

" show.lex.

This procedure displays all the lexical entries in the Prolog recorded database, exactly in the
form in which they are stored.

* edit-word(Word).

This procedure, which is documented separately, can be used to edit the raw lexical entries
in the Prolog recorded database for a specified word. But since it first displays all the lexical
entries which have the same root as the specified word, it can be used as the 'physical'
equivalent of the logical view offerred by lex-display(Word).

2 Lexical Entry Procedure

The LEP has been enhanced to allow the entry of 'multi-word expressions' such as anti-submarine
rocket. These are stored in the lexicon as single words joined by circumflexes, for example, as in
the follwoing lexical entry:

: (asrocroot: ant i- (-)-submarine-rocket, En: [II,singularJ , 11: EncountI)3).

To enter such expressions using the LEP, simply enter them in the form in which they would appear
in text, e.g.:

Word: anti-submarine rocket

The LEP will transform this into the form in which it must be stored in the lexicon.

2

I
I

I A Guide to Object Options in PUNDIT*

3 Marcia Linebarger

August 10, 1988

I
i

I
I

I

I

'This work has been supported by DARPA contract N00014-85-C-0012, administered by the Office of Naval

Research APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED.II

I

Contents

1 Introduction 1.

1. 1 Handling of Passive in the Lexicon.

1.2 The TSR. 1

1.3 On pvals and dpvals 2

2 Object Options 2

2.1 NULLOB]. 2

2.2 NSTGO. 2

2.3 PN. 3

2.4 NPN 4

2.5 PNN 4

2.6 OBJBE... 5

2.7 EQTOVO...5

2.8 TOVO.. 6

2.9 NTOVO..6

2 10 OBJTOVO .. 7
2.11 THATS... 8

2.12 ASSERTION.. 8

2.13 PNTHATS..8

2.14 SVO..9

2.15 CiSHOULD...9

2.16 PNTHATSVO.. 10

2.17 SNWH.. 10

2.18 NSNWH...10

2.19 NTHATS.. 10

2.20 SVEN...10

2.21 NN...11

2.22 SOMJE...12

2.23 NA...12

2.24 ASTG...13

2.25 DSTG...13

2.26 DPi... 13

2.27 DP2 14

2.28 DP3 14

2.29 DP1PN. 14

2.30 DP2PN. 15

2.31 DP3PN. 15

2.32 DPSN 15

I

i I Introduction

This document describes the current object options of the grammar, with the corresponding passobj
(passive object) options and ISRs (Intermediate Syntactic Representations - see below), and with
some very limited annotations on their structural quirks, semantics, raison d'tre, and so forth.
The numbering of object options below is the same as that in the Lexical Entry Procedure, and
these notes are intended for use during entry of new lexical items. Object options which are
restricted to one or two verbs (such as BE-AUX, VENO, and VO, associated with the auxiliaries
be, have, and modals) are not included in this list, because we assume that most verbs with these
subcategorizations have already been entered in the lexicon. Such object types may be assigned
to a new verb by choosing Other in the Lexical Entry Procedure menu.

3 1.1 Handling of Passive in the Lexicon

The parse tree built by PUNDIT represents surface structure; transformations such as passivization

and wh-movement are not 'undone' at this level. Thus verbs must be subcategorized for the objects
they take in both active and passive. (Note on terminology: objects of the verb in its active form are
called object; the list of a verb's objects in the lexicon is called the objlist. Similarly, passive

objects are called passobj, and the list of a verb's passive objects in the lexicon is called the
pobjlist. Note the systematic ambiguity of the word 'object'.) Because the correlation between
an active and a passive object is predictable, the Lexical Entry Procedure automatically computes
the passobj on the basis of the active objects selected. Verbs which do not passivize receive no
pobjlist whatsoever in the lexicon; they should not be subcategorized for NULLOBJ in the passive.
The by-phrase, if present, is parsed as a sentence adjunct rather than a passobj. Note that although
some active object options (e.g., NULLOBJ) are never associated with a corresponding passive
object, since they never passivize, others may or may not be; since the Lexical Entry Procedure
automatically computes the corresponding passobj for any object type which passivizes, it is up
to the user to edit out of the lexical entry any unacceptable passobj.

51.2 The ISR

Although the parse tree represents surface structure, the ISR is a somewhat more abstract level of
syntactic representation, which, like the 'deep structure' of transformational grammar, provides a
more transparent representation of argument structure. For example, the surface subject of the
passive is represented in the ISR as the object of the verb. As in many current syntactic theories,
the subject position of a passive ISR remains unfilled (in PUNDIT, it is filled with the dunmmy
element passive), and it is the function of semantic rules to determine whether an element ii a
by-phrase may fill the semantic role which would be assigned to the subject. Thus, at least for the
object, active and passive sentences can be interpreted by the same semantic mapping rules. In
some cases, the ISRS of passive sentences diverge significantly from the surface structure in order to
bring about this parallelism between active and passive; for example, the ISR for a pseudopassive
such as The patient was operated on reconstructs the prepositional phrase. Thus the surface parse
tree provides the bare preposition on as object of the verb, while the ISR provides the prepositional
phrase on the patient as object.

The ISR also fleshes out the argument structure of constructions such as equi and raising, as seen in
connection with object types EQTOVO, TOVO, and OBJTOVO below; and it regularizes the surface

I

U
I

order of object types which differ from one another only in the order of their components (such as
NPN and PNN, or DP2 and DP3).

Because there are such divergences between the ISR and the surface parse, and because the ISR
plays an important role as the interface between syntax and semantics, the Isns associated with n
each object type and its passivized counterpart are given below. For ease of exposition, only the

prettyprinted [SR is displayed.

1.3 On pvals and dpvals

Object types containing prepositions can be subcategorized for particular prepositions, via pval i
sublists in the lexicon; object types containing particles can be subcategorized for specific particles
via dpval lists in the lexicon. The Lexical Entry Procedure queries the user to create these lists

where appropriate. I
2 Object Options

2.1 NULLOBJ

A verb which takes no complement at all is subcategorized for NULLOBJ. Example: The pump I
failed, which receives the following isR:

OPS : past m
VERB: f ail
SUBJ: the pump (sing) i
Such verbs do not passivize, hence there is no corresponding passobj.

2.2 NSTGOI

This is the simple transitive verb option, a noun phrase non-predicative direct object. Example:
She repaired the sac, which receives the following ISR. The direct object receives the semlabel obj.
(Semlabels are applied to elements in the [SR to label those grammatical functions which play a

role in semantic rules. In the prettyprinted iSRS, the oerm!abels of all postverbal elements appear
in capital letters, e.g. SUB.J: in the example below.) 5
OPS: past

VERB: repair
SUB2: pro: she (sing)
OBJ: the sac (sing)

The passobj counterpart of NSTGO is NULLOBJ, as in The sac was repaired (by her). The by- 5
phrase is parsed as a sentence adjunct; this is iivt evident in thc ISR below because the [SR (for

reasons having to do with the functioning of the semantic interpreter) fails to indicate whether a

prepositional phrase occurs as a sentence adjunct or a verb object. 3
2

I

OPS: past
VERB: repair
SUBJ: passive
OBJ: the sac (sing)
PP: by

pro: her (sing)

Note that the surface subjecc is represented as the object in the ISR. The subject position of the
ISR is filled with the dummy element passive.

2.3 PN

This is a prepositional phrase object. Example: They operated on him:

OPS: past
VERB: operate
SUBJ: pro: they (pl)
PP: on

pro: him (sing)

Corresponding passobj: isolated preposition. Example: He was operated -n; in the ISR, the prepo-
sitional phrase is reconstructed:

OPS: past
VERB: operate
SUBJ: passive
PP: on

pro: he (sing)

When do we want PN to be analysed as an object option rather than a sentence adjunct (SA)? As
far as I can tell, the following are the most relevant cases in which the PN object is subcategorized
for in this system:

(a) The verb is unacceptable with NULLOBJ, and PN will suffice. E.g., *He told (ignoring
elliptical reading). But He told of great adventures.

(b) The VERB + PN has an idiomatic meaning (or just feels like a unit): the surgeon operates
on the patient and the surgeon operates on the table represent, under their most plausible
readings, the PN object and SA attachments respectively. Similarly: Bill turned into the
side street (sA expressing where he turned) vs. Bill turned into an orangutang (PN
object).

The possibility of a pseudopassive doesn't seem to be a motivating factor: sleep in our lexicon isn't
subcategorized for in or on, etc., yet you can say That bed was slept in by George Washington or
This floor has been slept on by countless fatigued parlygoers. If a verb with PN object can passivize
at all, as above, its passobj will be a P (at the moment this passobj is not listed under very
many verbs in the lexicon.) Thus it is currently an unsolved problem how to treat pseudopassives

3

corresponding to active sentences in which the PN is in SA as in the sle-p example above: we don't
really want to allow P as an SA option generally. So another possibility would be to allow PN object
(with no subcategorization for specific lexical items) more freely, automatically generating the PN

object possibility for ANY verb which allows ps udopassive. The cost of this is that we lose the
way of structurally representing differences such as that between, e.g., operate on the table and
operate on the patient.

2.4 NPN

and

2.5 PNN

NPN consists of an NSTGO followed by a PN, as in They returned the disk drive to the factory:

OPS: past
VERB: return

SUBJ: pro: they (p1)

OBJ: the disk-drive (sing)

PP: to
the factory (sing)

See above for discussion of when to include the PN in object rather than SA. Another criterion: is
there a corresponding PNN object? PNN is the BNF node associated with NPN which has undergone
a shifting of the NP, constrained by various stylistic factors such as heaviness. It's one of the
unpleasant facets of the grammar we use that this extraposition gets expressed as a different BNF
node. Subcategorization for PNN follows redundantly from subcategorization for NPN, since the
acceptability of PNN depends not on the verb but on the NP itself. (Compare He presented to us
an enormous chocolate cake iced with yellow daffodils vs. the much less pleasing He presented to
us a cake.)

Note that a sequence of NP + PN need not be parsed as NPN; for example, I found Louise in a
state of euphoria should probably be classed as a SOBJBE (see below), given related sentences such
as I found Louise euphoric, I found Louise a changed woman. The PN here is predicated of Louise

rather than simply being an argument of find. In contrast, the PN in I found Louise on the fourth
try seems more like an SA describing the circumstances of the event of finding Louise, certainly not
a predication stating that Louise was on the fourth try.

The passobi counterpart of NPN/PNN is PN;, as, in The disk drive was returned to the factory:

OPS: past
VERB: return
SUBJ: passive
OBJ: the disk-drive (sing)

PP: to

the factory (sing)

(Compare "The , iory waN returned the disk drive to: no pseudopassive is possible here except
with idiomatic expressions such as Ie was given a talking to.)

4

2.6 OBJBE

OBJBE, the object type associated with be as a main verb, is subcategorized for by verbs other
than be. OBJBE expands to an NP, an adjective phrase, or a PP; not every verb allows all these
expansions, as indicated by bvals in the lexicon. (The Lexical Entry Procedure does not currently
solicit bvals.) Examples: The pump appears inoperative:

OPS: present
VERB: appear
SUBJ: the pump (sing)
ADJ: inoperative

and She became a field engineer.

OPS: past
VERB: became
SUBJ: pro: she (sing)
PREDN: a field-engineer (sing)

These verbs don't passivize at all, so they have no passobj counterpart (and hence no pobjlist is
created for them by the Lexical Entry Procedure.)

Thus an NP following the verb can be analysed either as an NSTGO (He photographed the President's
advisor) or as an OBJBE (He became the President's advisor). This enforces the well-known fact
that predicative verbs do not passivize: The best cars are made by the Japanese (active form:
nstgo) vs. *The best cooks are made by Italians (active form: objbe).

2.7 EQTOVO

An example of EQTOVO is The fe wants to repair the disk drive. EQTOVO corresponds to what is
traditionally known as an infinitival complement with subject controlled equi; the subject of the
matrix verb is understood to be also the subject of the infinitive. This is made explicit in the ISR,
where the matrix subject is copied into the infinitive; the ID variables for the two NPS are identical
(a fact which is obscured below because the ISR prettyprinter does not display variables):

OPS: present
VERB: want
SUBJ: the field-engineer (sing)

OBJ: OPS: untensed
VERB: repair
SUBJ: the field-engineer "sing)
0BJ: the disk-drive (sing)

There is no passobj, as these structures do not passivize.

5

2.8 TOVO

An example of TOVO is The pump seems to be failing. The TOVO object corresponds to what is
traditionally known as raising; the matrix subject is analysed as an argument of the infinitive, but
not of the matrix verb, which has the infinitive as its sole argument. This is made explicit in the
ISR, where the reconstructed infinitival clause is the subject:

OPS: present
VERB: seem

SUBJ: OPS: untensedprog

VERB: fail
SUBJ: the pump (sing)

As for passobj, raising verbs don't passivize, so there is no pobjlist.

As noted above, these two object types EQTOVO and TOVO diffcr in their argument structure, and
hence in their selection properties, differences which are made explicit in the ISR. In the EQTOVO
(equi) case, the phonologically null subject of the infinitive undergoes selection with the matrix
verb as well as with the verb in the infinitive. That is, the fe is really the subject of both want and
repair in The fe wants to repair the disk drive. One can run afoul of selection restrictions between
this noun and either verb: The number 12 wants - to be divisible by 3, and The cat wants - to be

divisible by 3 are both anomalous, due to violations of selection between the matrix subject and
the matrix and embedded predicates, respectively.

For the bare rovo case, the matrix subject is semanticaliy just the subject of the lower verb; that
is, the matrix verb is really a one-place predicate with a clause as its argument. (Thus the ISR

subject of The pump seems to be failing is not the pump but the pump to be failing.) There's no
selection between the surface NP subject (the pump) and this matrix verb (seem): whatever can
be subject of the infinitival verb V can also be subject of seem to V .. D. Sager refers to these as
aspectual verbs. They include: seem, appear, start, tend, continue, come (as in It came to rotate,
NOT as in I come to bury Caesar, not to praise him. The latter is a purposive TOVO in SA.)

To summarize: with EQTOVO, the riatrix subject is an argument of the matrix verb and also of the
verb in the infinitive; with TOVO, the matrix subject is an argument only of the lower (infinitival)
verb. (The two types correspond to equi and raising, respectively.)

In Sager's grammer, these two categories are conflated. Some existing lexical entries therefore
require updating, since this distinction %%as introduced after PUNDIT's lexicon was established.

2.9 NTOVO

Like OBJTOVO (see below), NTOVO is associated with surface sequences of the form 'NP to VP'

following the matrix verb; it corresponds to what is sometimes called 'exceptional case marking
(ECM)'. An example of NTOVO is The factory expects the fe to repair the sac:

OPS: present

VERB: expect
SUBJ: the factory (sing)

OBJ: OPS: untensed

6

I

VERB: repair
SUBJ: the field-engineer (sing)

CBJ: the sac (sing)

Thus the field engineeer is the subject of the clause but is not a direct object of the matrix verb;
the factory does not expect the fe, but rather it expects the proposition expressed by the infinitive.

(A consequence of this is that pleonastic elements such as there may occur in subject position of

NTOVO: I expect there to be unlimited champagne.)

The passobj counterpart of NTOVO is TOVO, as in The fe is expected to repair the sac; the ISR rule

associated with TOVO will automatically reconstruct the infinitive the fe to repair the sac:

OPS: present
VERB: expect

SUBJ: passive
BJ : CPS: untensed

VERB: repair

SUBJ : the field-engineer (sing)

OBJ: the sac (sing)

2.10 OBJTOVO

OBJTOVO corresponds to object controlled equi; in The factory told the fe to repair the pump, the

fe is an argument (indirect object?) of the matrix verb and subject of the infinitive:

OPS: past
VERB: tell
SUB.J: the factory (sing)
DOBJ: the field-engineer (sing)

OBJ: OPS: untensed
VERB: repair

SUBJ: the field-engineer (sing)

OBJ: the pump (sing)

The semlabel d.obj (dative object, formerly known as inner-obj) is used here to capture the

parallelism with The factory told the fe the truth.

The passobj counterpart is EQTOVO. The ISR rules associated with EQTOVO reconstruct infinitive

as above for The fe was told to repair the sac:

OPS: past
VERB: tell

SUBJ : passive

D_OBJ: the field-engineer (sing)

OBJ : OPS: untensed

VERB: repair
SUBJ: the field-engineer (sing)
CBJ: the sac (sing)

r7

Major differences between NTOVO, OBJTOVO: in NTOVO, the subject of the infinitive is an argument
ONLY of the lower verb. The entire infinitival clause is itself the argument of the matrix verb.
There are no selection restrictions between, e.g., believe and the table in I believed the table to
be quite attractive. In OBJTOVO, on the other hand, the noun phrase between the matrix verb
and the infinitive is an argument of BOTH matrix and embedded predicates, as demonstrated by
the anomaly of I persuaded the table to seat 6 (violates selectional constraints on persuade) and I
persuaded the man to be divisible by 2 (violates selectional constraints on divisible), also, NTOVO
but not OBJTOVO allows there as subject: I ezpect there to be a diplomat at the party (*I persuaded
there to be a diplomat at the party).

PUNDIT does not currently handle the rare cases of subject-controlled equi in verb complements of
the form 'NP to VP', as in Mary promised Louise to arrive on time. This form of control is largely
restricted to the single verb promise.

2.11 THATS

and

2.12 ASSERTION

THATS and ASSERTION are both tensed clauses, with and without the complementizer that, as in

The fe said that the disk drive was inoperative:

OPS: past
VERB: say
SUBJ: the field-engineer (sing)
OBJ : OPS: past

VERB: be
SUBJ: the disk-drive (sing)

ADJ: inoperative

Verbs subcategorized for THATS and ASSERTION are automatically subcategorized for these same
objects in the passive, given the possibility of pleonastic subjects, as in It is said that whales are
highly intelligent. Work remains to be done to constrain these cases in the grammar. General
note on passobjs with verbs taking clausal objects (ASSERTION, THATS, PNTHATS, SVO, CISHOULD,

SNWII, NSNWH, NTHATS): in Sager, passives with it subject (It was reported that the disk failed)

are not treated as having a clausal passobj. Rather, the clause goes into rv at the string level.
However, it seems to me that these verbs should all be subcategorized for clausal passobj.

2.13 PNTHATS

This is a PN followed by THATS, as in The fe reported to the factor, that the sac had failed:

OPS: past
VERB: report
SUBJ: the field-engineer (sing)

8

PP: to
the factory (sing)

OBJ: OPS: past,perf
VERB: fail

SUBJ: the sac (sing)

These objects are further subcategorized for pvals, like all PN-containing objects. Not every VERB

+ PP + CLAUSE structure involves a PNTHATS; for example, this proves with some certainty that

the world is round should be analyzed as a THATS with preceding PN in SA, while this proved to

everyone that the theory was wrong should be treated as PNTHATS with PN in OBJECT.

The passobj counterparts are PN and PNTHATS, as in It was revealed to us yesterday that the

company had gone bankrupt (PNTHATS as passobj), or That Smith was the culprit was announced

to the entire assembly (PN as passobj).

2.14 SVO

svo is a tenseless clause; it differs from CISHOULD (see below) in that (1) svo never has the

complementizer that, (2) a pronoun subject of svo is accusative. Example: She saw them replace

the pump:

OPS: past
VERB: saw
SUBJ: pro: she (sing)

DBI: OPS: untensed
VERB: replace

SUBJ: pro: them (pl)

OBJ: the pump (sing)

Passivization is not acceptable out of svo, cf. *They were seen replace the pump.

2.15 CISHOULD

This consists of the complementizer that followed by svo, as in He suggested that it be replaced:

OPS: past
VERB: suggest

SUBJ: pro: he (sing)
OBJ: OPS: untensed

VERB: replace

SUBJ: passive

OBJ: pro: it (sing)

Passobj counterparts: CISHOULD, as in It was suggested that we leave early; and probably NULLOBJ.

(My intuitions are unclear on NULLOBJ as passobj here.)

A pronoun subject of CISHOULD is nominative. The current BNF rule for ClsHOULD requires that,

but should be generalized to account for I suggest we leave.

9

2.16 PNTHATSVO

This consists of PN followed by CISHOULD, as in I suggested to Bill that he write up his inves-
tigations. Pvals are elicited by the Lexical Entry Procedure. Passobj counterparts are PN and
PNTHATSVO.

2.17 SNWH

Not currently implemented. This is an indirect question, an embedded clause beginning with a
wh-word. Example: I know who borrowed the car, She wondered whether it would snow. Passobj

counterparts are SNWH and NULLOBJ, as in It was finally revealed who stole the car, or What he
was really up to that day was revealed months later at the investigation.

2.18 NSNWH

Not currently implemented. This is an NP object followed by indirect question, as in He asked us
whether it would snow. Passobj counterparts: SNWH, NULLOBJ.

2.19 NTHATS

This is an NP followed by a THATS, as in She told the factory that the sac was inoperative:

OPS: past
VERB: tell

SUBJ: pro: she (sing)
DOBJ: the factory (sing)

OBJ: OPS: past
VERB: be

SUBJ: the sac (sing)
ADJ: inoperative

Note that the NP object is marked as a dative object (semlabel d-obj, formerly inxer-obj). This
is because of the parallelism with dative constructions like He told the factory the truth.

Passobj counterpart: THATS. The semlabelling of this construction in passive is currently being
refined in order to distinguish between cases like He was told that the pump was inoperative, where
the subject should be marked as d.obj; and It was said that the pump was defective, where expletive

it should not be represented in the argument structure at all.

2.20 SVEN

This is a predicative small clause, as in He had the sac repaired quickly:

10

OPS: past
VERB: have

SUBJ: pro: he (sing)
OBJ: OPS: untensed

VERB: repair
SUBJ: passive

OBJ: the sac (sing)
ADV: quickly

This sentence is ambiguous between SVEN and NSTGO analyses of the object: the NSTGO reading
can be paraphrased He had the sac which had been repaired quickly, while the SVEN reading can
be paraphrased He caused the sac to be repaired quickly. In the latter case, no one need be in
possession of the sac. This difference is clearer still in She found the book missing. Clearly, book
is not itself an argument of find, since the book was not found; what was found (out) was the
proposition the book is missing. There's a lot of variation here, though: sometimes the subject of
the small clause under find also seems to be an argument of the verb, especially in the passive (The
car was found parked on Elm Street). Other verbs are clearer: They reported the car stolen doesn't
mean that they reported the car, nor does He had the stairs fixed mean that he had the stairs.
Probably one should split hairs and use two different BNF nodes corresponding to the NTOVO vs.
OBJTOVO (exceptional case marking vs. object-controlled equi) distinction.

Passobj counterpart: VENPASS, as in The gear teeth were found stripped and corroded. SVEN doesn't
always passivize, as above. (ISR rule is still under development for this passobj.)

2.21 NN

NN is the double object dative, as in The factory found her a new pump or They told her the result:

OPS: past
VERB: tell
SUBJ: pro: they (pl)

DOBJ: pro: her (sing)
OBJ: the result (sing)

Note that the indirect object is semlabelled d-obj.

Passobj counterpart is NSTGO, as in She was told the result:

OPS: past
VERB: tell

SUBJ: passive
D_OBJ: pro: she (sing)
DBJ: the result (sing)

Note that NP + NP sequences need not be parsed as NN. I gave Ruth a good answer contains NN,
but I consider Ruth a good dancer is SOBJBE (below).

Many but not all NNs have counterparts with the to- or for- dative; thus give books to Louise
alternates with give Louise books. However, in some cases only the prepositional form is found

11

(compare the meaning of I got my degree for my parents (not for myself) with that of I got my
parents my degree); in other cases, we find only NN, as in The book cost Mary five dollars. The
two constructions (NN and prepositional datives) have different semantic properties, so we do not
want to attempt to represent them identically in the ISR.

2.22 SOBJBE

This is another small clause, consisting of subject followed by OBJBE (nstg, astg, or pn), as in I
consider him a genius or They consider it inoperative:

OPS: present
VERB: consider

SUBJ: pro: they (pl)

DBJ: OPS: untensed
VERB: be

SUBJ: pro: it (sing)
ADJ3: inoperative

Sager has further subcategorization for nstg or astg or pn (or dstg, not included here) via bvals in
the lexicon, since some verbs do not allow all OBJBE options: cf. Th.! made her angry, That made
her the reigning monarch, *That made her i.n e state of rage. PUNDIT'S Lexical Entry Procedure

does not currently elicit bvals.

The passobj counterpart is OBJBE, as in He is considered a genius by his associates or It is con-
sidered inoperative:

OPS: present
VERB: consider

SUBJ: passive

OBJ: OPS: untensed
VERB: be

SUBJ: pro: iz (sing)
ADJ: inoperative

2.23 NA

This is a sequence of NP followed by an adjective phrase, as in She painted the barn red or they
stripped the gears bare:

OPS: past
VERB: strip
SUBJ: pro: they (pl)
0BJ: the gear (p1)
RES-CL:OPS: untensed

VERB: be

SUBJ: the gear (p1)

ADJ: bare

12

The NA object type differs from SOBJBE in several respects. First, in NA the NP is an argument of
the verb; if one paints the barn red, one has definitely painted the barn, whereas to have found the
book missing is not to have found the book, and to believe the problem insoluble is not to believe
the problem. Furthermore, the predication relationship between the adjective phrase and the NP
is interpreted as a result in the case of NA. Finally, there is sometimes idiosyncratic selection
between verb and adjective in NA, but not in SOBJBE. Thus We sanded it smooth sounds fine, but
We sanded it ugly sounds odd, even if the ugliness is interpreted as resulting from the sanding.

The passobj counterpart is ASTG, as in The house was painted red or It was stripped bare:

OPS: past
VERB: strip
SUBJ: passive
OBJ: pro: it (sing)

RESCL: OPS: untensed
VERB: be
SUBJ: pro: it (sing)
ADJ: bare

2.24 ASTG

Example: It went bad:

OPS: past
VERB: go
SUBJ: pro: it (sing)
ADJ : bad

Verbs with the ASTG object select for particular adjectives, as in He went mad (vs. the anomalous

He went sane); and do not subcategorize for other OBJBE options (*He went a madman). But it
seems semi-semantic: He turned blue/green/mean/sour/serious but *He turned old/happy. Thus
it might not be possible to subcategorize for specific lexical items.

No passive.

2.25 DSTG

This is also quite rare. Certain verbs subcategorize for specific adverbs (He means well vs. *He
means warmly, or She did beautifully vs. *She did quietly). No passive.

2.26 DP1

This is the simplest verb-particle combination, as in He showed off, We lined up(vs. *He showed
out, * We lined over), or Engine jacks over

13

OPS: present
VERB: jack
SUBJ: engine (sing)
PTCL: over

No passive.

2.27 DP2

DP2 is a particle followed by an NP, as in He ran up the bill. In contrast, He ran up the hill in
its normal interpretation is NOT a DP2, but is rather a PN object. One test: only particles can

occur to the right of the noun: He ran the bill up vs. *He ran the hill up, to cite a classic example.
Another test: only a PN can be topicalized, since it's a constituent: Up the HILL he ran vs. * Up
the BILL he ran. Another example: They blew up the ship:

OPS: past
VERB: blow
SUBJ: pro: they (pl)
PTCL: up
OBJ: the ship (sing)

Passobj counterpart is the particle, DPI, as in A huge bill was run up that evening or The ship was
blown up:

OPS: past
VERB: blow
SUBJ: passive
OBJ: the ship (sing)
PTCL: up

2.28 DP3

DP3 is just the permuted version of DP2, where the particle follows the noun phrase. Same passobj
as DP2; order regularized in ISR. Since there are no transformations in PUNDIT, such alternations
as that between DP2 and DP3 must be handled lexically.

2.29 DP1PN

This is a particle followed by a PP: She moved in on him, They found out about it, The factory
should have followed up on it:

OPS: past,shallperf
VERB: follow
SUBJ: the factory (sing)
PTCL: up
PP: on

pro: it (sing)

14

Passobj counterpart is DP1P, when it passivizes, as in The announcemen! was led up to by a series
of remarks about the company's financial difficulties(?), or It should have been followed up on:

OPS: past,shall,perf
VERB: follow
SUBJ: passive
PP: on

pro: it (sing)
PTCL: up

2.30 DP2PN

DP2PN is a DP2 (particle + NP) followed by a PN, as in He mixed up the apples with the pears.

Passobj counterpart: DP1PN, as in The apples were mixed up with the pears. (Not, for example,
*The pears were mixed up the apples with.)

2.31 DP3PN

This is a DP3 (NP + particle) followed by a PN, as in mix the apples up with the pears. Passobj
counterpart is also DP1PN.

2.32 DPSN

DPSN is a particle followed by a clause, as in She found out where it was hidden, He pointed out that
it was noon already, They often make out to be villains, or She found out that it was inoperative:

OPS: past
VERB: find
SUBJ: pro: she (sing)
OBJ : OPS: past

VERB: be
SUBJ: pro: it (sing)
ADJ: inoperative

PTCL: out

Passobj counterparts are DPSN, as in It was pointed out frequently that the plan could not succred,
and DPI Where it was hidden was never really found out. Both sound a little marginal, but might
occur.

15

A User's Guide to the Selection Modulet

Franpois-Milchel Lang

LBS Technical Memo No. 8I Paoli Research Center, Unisys
P. 0. Box 517, Paoli, PA 19301

1 1.]Introduction

This guide is intended to introduce the PUNDIT community to the selectional component, and
to answer any questions that users may have about its use and operation. Improvements and

suggestions are most welcome.

2. Rationale

The purpose of this module is to collect empirically observed word-level selectional patterns
from data, and to support generalization of these patterns to semantic class patterns. TheseU patterns are classified into valid and invalid patterns, and stored in a pattern database.

a. Basics

I The selectional component is invoked from the BNF grammar by two restrictions:
vooselection and np..selection.

3 vso..selection is called from the CENTER and ASSERT-YRAG nodes, to check selection in
assertions, questions, and fragments.30 . np-selection is called from the NSTG node, to check selection in LNR nodes.

The BNF rules in question are the following:

3: center ::u
(({dquest2}, assertion, {v..endmarc) -assextion),{vuooselection)) xor
((dqueuti), question, {w-.endznarkl - question), {vso..selection.) xor

((fragment, {w..endinarl) fragment), {vao..selection))) xor

(compound -> compound), {vso..selection).

assert.frag ::-
((assertion, internal-.punct -~assertion) xor
(fragment, internal-.punct -'fragment)), {vso..selection}.

notg ::a

((d..endmark},
(((mnr -> lnr),{np..selection));

(ipror -> ipror);I (nsvingo -> nsvingo)));
((d..gap),nullwh -> nullwh).

3 tThis wotk has been supported in part by DARPA under contract N00014-85-C-0012, administered by the Office
of Naval Research (APPROVID FOR FUoLit; kSLEASS, DISTRIsMMON UNukaTtn), in part by National Science Foundatio~n ron-

tra't DCR-85-02205, as well as by Independent R&D funding from System Development Corporation, now part of Un-3 isys Corporation.

These two restrictions then examine the ISR for those nodes to check selectional patterns in the

assertion, question, fragment, or noun phrase. At the time these restrictions are called, the ISRa
are expected to be instantiated, simplified, fully assembled and lambda-free. If the restrictions

encounter an ISR which is not in simplified operator-operator form, a very visible warning mes-
sage will be issued to the user by the "soop checker". Assuming the ISR is well formed, each of

the two restrictions then calls a definite-clause grammar (DCG) to analyze the ISR.

4. At the Top Level

After typing in a sentence, the user will be asked to enter a unique sentence ID if that sentence
has not yet been recorded in the current corpus of sentences.

The parser will then parse away, and when a complete LNR or sentential node has been assem-
bled, the ISR for that node will be passed to the DCG, and the questions will begin.

5. The Queries

In the course of examining the ISR, the selection mechanism will ask certain questions about the

validity of lexical co-occurrence patterns. Some typical questions (with some sample answers in

italics) are

Is this <svo> pattern good: field^engineer repair sac --------- > y

Is this <qpos/n- pattern good: <NUMBER> sac ----------------------- > V
Is this <n/pp> pattern good: loss of sac -----------------------> y

Is this <n/n> pattern good: sac failure -------------------------
Is this <adj/n> pattern good: fine particle ----------------------- >

The question contains two important parts:

* the type of pattern (e.g., svo, qpos/n, n/pp, n/n, adj/n)

* the specific lexical items which form that pattern (In certain cases, special atoms such as

<NUMBER> will appear in the pattern instead of actual lexical items. These special

atoms are discussed in more detail below).

6. The Pattern Types

The types of patterns are listed in Figure 1 below (this list is subject to change), with examples
for any non-obvious patterns. The names of the patterns will eventually change, since currently
the slash ("/") is overloaded, denoting conjunction, modification, and siblinghood.

7. The Responses

When prompted with such a lexical pattern, the user has several possible responses:

(1) "y": (YES) Signals a globally good pattern. Answer with V when the pattern is semanti-
cally acceptable, consiptent with the domain, and plays the intended role in the sentence
(i.e., leads to a correct parse).

2

Figure 1: Types of Selectional Patterns

PATTERN EX]CLAYATION and EXAMPLES of GOOD PATTERNS

adj/n An adjective (either attributive or predicate) modifying a noun
EX: FINE metal PARTICLES found in filter.

adj/ pp A PP functioning as adjective complement

EX: Oil is DARK IN APPEARANCE.

adv/adj An adverb modifying an adjective
EX: Sac is COMPLETELY INOPERATIVE.

adv/p An adverb modifying a preposition
EX: Pressure is SIGNIFICANTLY OVER the limit.

conj/adj Conjoined adjectives
.: Loss of pressure was SUDDEN and UNEXPECTED.

co.ij/n Conjoined nouns

EX: Loss of PRESSURE and TEMPERATURE.

conj/v* Conjoined main. verbs of 2 sentences
Ex: The sac BROKE, and the fe REPAIRED it.

n/adj A noun modifying an adjective
EXS: FACTORY INSTALLED, CRYSTAL CLEAR

n/adv A.7-, adverb in an NSTG.FRAG
1- : Sac FAILURE YESTERDAY.

n/n A compound noun
LX: Loss of OIL PRESSURE.

n/pp A PP modifying a noun
LX: EROSION OF IMPELLOR is evident

n/predn A subject and predicate noun
LX: Alarm CAPABILITY is a NECESSIi Y.

nq An NQ consists of a noun followed by a Q;
LX: See FIGURE S.

nq/n An NQ modifying a noun
LX: the FIGURES STATISTICS

qn A QN consists of a Q followed by a noun.
LXS: 10 DA Y, -0 INCH

3

qn/n A QN modifying a noun
EXS: a FIVE ALARM FIRE, a 500 PAGE BOOK

qpos/n A quantifier modifying a noun
EX: The fe repaired 5 SACS.

svo Subject verb object
EX The FE REPAIRED the SAC.

v/adv An adverb modifying a verb
EX: The sac FAILED SUDDENLY.

v/pp A PP modifying a verb
EX: Metal particlea were DISCOVERED IN OIL FILTER.

v/qn An NQ modifying a verb
No known examples in the sac domain
A muck example 6 sip CLEARING 60 DEGREES

*Patterns marked with an asterisk are not currently presented to the user
because they contain no significant selectional information.

(2) "n": (NO) Signals a globally bad pattern. Answer with n when the pattern is semanti-
cally unacceptable, or not consistent with the domain.

(3) "s": (SUCCEED) Signals a locally good pattern. Answer with s in either of two situations.
One is when the pattern is semantically unacceptable, and not cc n li tent with the domain,
but happens to be part of the right parse for the sentence. The:. are rare, and are usu-
ally caused by "phrasal attrihutes" (the "stiff neck phenomenon"). A discussion of this
troublesome phenomenon is included in the next section. A example from the sac domain
is found in the sentence Oil pressure dropped below 30 psig, which generates the PP pat-
tern [drop, below, psig], which is anomalous, but, at least in this parse, -rect. The

other case in which one should answer a is when one wishes to defer judgement about a
pattern whose validity or acceptability in the domain is in doubt. If the user is not willing
to categorically state that the pattern is anomalous, but, on the other hand, is not con-
vinced of its validi.y, s is the correct response.

(4) "fr: (FAIL) Signals a locally bad pattern. Answer with f when the pattern may be
semanticrlly acceptable and consistent with the domain, but happens to be part of a
wrong parse. Example: The sentence Loss of oil pressure might generate the pattern
[lose, of, oil], which may be semantically valid, but is not part of the right parse.

(5) "a": (ABORT) Abort parsing this sentence. More on this option later.

(6) "b": (BREAK) Enter a break level. Has effect of typing b to the debugger or calling the

goal break in Prolog (which is, of course exactly what this does).

(7) "e": (EXPLAIN/EXPAND/EXAMPLES) Ask for an explanation of the pattern and addi-
tional examples of such patterns. (This feature has not yet been fully implemented.)

4

(8) "h" (HELP) Ask for a summary of possible answers.

I(9) "'" Same as A

3 8. The Phrasal Attribute Problem

As mentioned above, "Locally good" patterns are used to deal with phrasal attributes. An

example of this phenomenon taken from a medical domain is the noun phrase stiff neck: The

semantic class of the head noun of this NP, neck, is something like BODY-PART, but the

semantic class of the full NP stiff nzck is not BODY-PART, but rather SYMPTOM or AIL-
MENT. This discrepancy between the semantic classes of the full NP and of its head noun

presents a difficulty in making a decision about the acceptability of patterns generated. For

example, in parsing the sentence Patient has stiff neck, the system would present to the user
the SVO pattern [patient, have, neck]. Note that this is indeed the correct syntactic parse (in

fact, probably the orly one), but we do not want to assert for posterity that the sVo pattern

[patient, have, neck] is semantically acceptable in a medical sublanguage.

This is perhaps a subtle point, but not everything that is true in a sublanguage can be said in

that sublanguage. The sentence Patient has atiff neck is a case in point: Although it is cer-

tainly true that the patient has a neck, nobody would ever (bother to) say so because the propo-
sition is completely uninformative. Indeed, it is one of the characteristics of a sublanguage that
certain (true) information is presupposed, and never explicitly stated.

In short, the parse is good, but the pattern [patient, have, neck] is bad. We do not want to

say the pattern is good, but saying it is bad will fail the parse, and that is not a desirable result

either. Hence the appropriatc response to the query about this pattern would be to tag it as
"locally good", which is a sort of compromise implemented in order to allow the parse to
succeed, but without entering the pattern in question into the (global) pattern database.

3 Our method of dealing with this phenomenon is admittedly not satisfactory. However, pending

a fuller semantic treatment of NPs which allows such distinctions to be made, it at least per-

mits the correct parse to be obtained without creating obviously bad patterns.

For an example of the phrasal-attribute phenomenon from the SAC domain, consider the sen-

tence Start air presiure dropped below 50 psig, which generates the PP pattern drop below
psig. The problematic NP here is 30 psig: the semantic class of the head noun psig is UNIT-

OF-MEASUREM9;NT, yet we would not say that the full NP 30 psig is a UNIT-OF-
MEASUREMENZ' S0 psig is instead an entity of the class LEVEL or perhaps THRESHOLD.

The problem is that in evaluating the pattern drop below psig, we would realize that pressure

can drop below a certain level or below a certain threshold, but it cannot drop below a unit of
measurement. The solution is to tag this pattern as locally good.

3 9. Special Atoms Appearing in Patterns

There are a number of special atoms which can appear in a pattern. Using such an atom in a

pattern usually serves one of two purposes:3 * To generalise a pattern immediately. For example, the qpos/n pattern (5, ec] should
have the same selection as [6, ae], so we generalize both these patterns to
(<NUMBER>, sac] on the fly. The generalization applies to numbers, dates, times, and
other entities whose specific value or instantiation is irrelevant for selectional purposes.
All that is relevant for such an entity is simply that it is in fact, e.g., a date. Typically,
these special atoms are productive forms recognised by PUNDIT's shapes component.I

3

0 To serve as a placeholder for an entity whose internal structure is irrelevant to selection
(e.g., <CLAUSE>), or whose referent is not inferrable from the ISR (e.g.,
<SOMEBODY/THING>, <WH>).

The special atoms are the following:

(1) <NUMBER>: stands for a number.
Ex: 5 sacs failed will generate the qpos/n pattern [<NUMBER>, sac].

(2) <TIME>: stands for a time.
Ex: the fe repaired the sac at 1150T will generate the v/pp pattern [repair, at,
< TIME>].

(3) <DATE>: stands for a date.
Ex: The fe repaired the sac on 12/25-2359 will gentrate the v/pp pattern [repair, on,
<DATE>].

(4) <PARTNO>: stands for a part number.
Ex: The fe repaired 123-456 will generate the svo pattern [field 'engineer, repair,
<PAR TNO>].

(5) <CLAUSE>: stands for a clause.
Ex: The fe reported that the sac failed will generate the svo pattern [field 'engneer,
report, <CLAUSE>].

(6) <SOMEBODY/THING>: stands for a passive or elided constituent.
Exa: The sentences Repaired the sac and The sac was repaired will both generate the
svo pattern [<SOMEBODY/THING>, repair, sac].

(7) <NULL>: stands for a null object.
Ex: Sac failed will generate the svo pattern [sac, fail, <NULL>] (Do not confuse this
with nalln below).

(8) <WH>: stands for a wh-word.
Ex: Who repaired the sac? will generate the svo pattern J< WH>, repair, sac].

(9) nulln: stands for a null head noun.
Ex: 2 broke (as in The fe installed 4 sacs, and 2 broke) will generate the qpos/n pattern
[<NUMBER>, nulln] and the svo pattern (nulln, break, <NULL>]. (This last pattern
is hardly perspicuous, and will need treatment by some mechanism designed to handle
referential information.)

The use of some of these special atoms (specifically, <SOMEBODY/THING>, <NULL>.
<WH>, and nulli) is not always intuitive, and is likely to change in the near future.

10. Generalisatlon to Class-Level Patterns

After answering the word-level query with either I or n, the user will then be asked to form a
generalization of that pattern based on the information in the domain isa hierarchy, provided,

• • m I 1

of course, that there is a hierarchy.1

The interface for this section is still in flux, but the current state of affairs is as follows: AfLer
answering that a given pattern is good (or bad), the user is shown all possible generalizations for

each word in the pattern appearing in the domain hierarchy. For example, when generalizing
the svo pattern [miller, sight, kynda], the user would be shown the output in Figure 2 below.

Each line of the display in Figure 2 shows a path from the concept in question up to the chil-
dren of the root concept. The user is then asked to choose which, if any, of the concepts are
correct generalizations of the lexical item.

Figure 2: Generalizations Based on the Domain Hierarchy

The svo pattern is [miller, sight, kynda]

.*.....**..*...*..*.. GENERALIZING MILLER

These are the possible generalizations for MILLER:

miller knox usplatform platform physicalobject

miller knox us-platform platform platformgroup physicalc-cbc't

miller knox frigate ship surface-platform platform physical-object

miller knox frigate ship surfaoe-platform platform platform-group physical-object

........ **.**ee.... GENERALIZING ICYNDA

These are the possible generalizations for KYNDA:

kynda urplatform platform physical-object

kynda urplatform platform platform-group physicalobject

kynda cruiser ship surface-platform platform physical-object

Please enter the generalizations for MILLER (or type "Ihelp." for help).

Generalizations: >'

IThe selection mechanism expects the hierarchy to be encoded in clauses of the form is&(SubSuper) and
semantlc-type (Sub. Super).

7

The intention of the generalisa~klns is that, given the good (bad) pattern P, which contains the
word SUB, SUB generalizes to SUPER in the pattern P if" for every concept C such that C
isa* SUPER 'where is&* is the transitive closure of isa), the pattern Q, which is P with C sub-
stituted for SUB, is also a good (bad) pattern.

The help message (printed in response to typing "help." to the prompt

Generalizations: >>

in Figure 2) is quite informative, and makes available a number of useful options. The help
message reads as follows:

Type your choices separated by commas, and terminated with a period.
List format is not necessary.
Type *[]= if you do not want to generalize at all.

Type lIbreak" to enter a break level.
Type Olaborto to abort parsing this sentence.
Type l1subs" to see the sub concepts of a concept.
Type ulsupers" to see the super concepts of a concept.

Type "lhelpo to generate this message.

By invoking the commands described in the help message, the user can

0 enter a break level (just like at the word-level prompt)

* abort out of parsing (more on this option below),

* ask to see all the immediate sub concepts of a given concept

* ask to see all the immediate super concepts of a given concept

• generate the help message.

After invoking either the I subs or I supers options, the user is prompted for the name of the
concept whose descendants or ancestors are to be displayed.

11. Files

There are two files which the selection module can write to (or create):
SELECTIONAL_PATTERNS.pl and USERCORPUS.pl. Both files are in the current working
directory. Since selection expects to be able to write to those files in the current working direc-
tory, users should ensure that they have write permission to the current working directory in

order to run with selection on and save output to a file.2

The SELECTIONALPATTERNS.pl file is used to store the patterns that the user has been

queried about. The file contains lines of the form

:-recordpattern (of,

*It is possible to change the current working directory (while running under Emics) by typing Re-s ed followed
by the desired directory. The current directory can also be changed directly through Prolog by executing the goal

I ?- unix(cd(DZR)).

where DIn in the goal is an atom 'responding to a valid directory. Note: Changing the current working directory
via Prolog does not allow specifying a path beginning with "" (tilde), but the Eec-s ed method doss.

8

I

bad-.electional-pattern(n/pp,[loss,of,secondl ,user(2))).

:-recordpattern(and,
good.selectionalpattern(conj/n, [Rac,and,disk] ,user(f4))).

:-record-pattern(fail,

good-selectionalpattern(uvo, [sacfail, *,NULL>] ,user(f4))).

Once such a file has been created, one need only compile it, and the patterns will be loaded in.

The USERCORPUS.pl file is used to store the sentences that the user has parsed with selec-

tion on. The file contains lines of the form

:-recordz(caureps,id([2], [the,sac,failed,' .]),_660).

:-recordz(caureps,id([s4],(the,sac,and,the,disk,failed,*.']),_393).

The sentences stored in this form are used for parsing sentences in batchmode and for the
test-pundit procedure.

The following are the other selection-related files in the stable system, and the contents of each
file:

(1) selectiondcg.pl: The DCG to parse the ISR.

(2) selectionquery.pl: The query and generalization mechanism.

(3) selectionrestr.pl: The two selection restrictions (vsoselection and
Inr_ selection).

(4) selection tools.pl: The selection switches, and facilities for inspecting, deleting, and

editing patterns.

(5) selection-top- level .pl: The interface between selection and the PUNDIT top level,

and various predicates to inspect and erase sentences recorded in a corpus.

(6) selection-utilities .pl: Miscellaneous utility predicates used by the selectional com-
ponent.

(7) xxx-aelection-db.pl: Domain-specific files (xxx denotes the domain) containing the

selectional patterns originally stored in the SELECTIONAL_ PATTERNS.pl file. Creating

the xxx-selection-db.pl file must be done manually by gathering all selectional pat-

terns collected in the SELECTIONAL _PATTERNS. p1 file, verifying their correctness, and

then putting the resulting set of patterns in the xxx-selection-db.pl file in the
appropriate PUNDIT directory.

12. Selection Switches

There are Reveral switches which can be used to control the behavior of the selection com-

ponent. These switches have not yet been incorporated into the top-level pundit switches

mechanism (as they should be), so the way to use and control these switches is likely to change.
However, this is how they currently work.

To check the current setting of the selection switches, type the goal sewitches. Every switch

has a default setting, indicated below by "(*)", and one or more associated predicates to control
the 63tting of the switch. The switches currently supported in the selection mechanism are:

(1) unknownselection: Controls the action of the program upon encountering an unknown
selectional pattern. The possible settings are
9 query: unknown patterns generate query to user ()

g

* succeed: unknown patterns automatically succeed
* fail: unknown patterns automatically fail

To enable querying of unknown patterns, type the goal aquery.
To aI3ow unknown patterns to succeed, type the goal usuccoeed.
To force unknown patterns to fail, type the goal ofail.

(2) fllelO: Controls whether or not the selectional patterns generated arc written to the file
SELECTIONALPATTERNS . p1 in addition to recording them in the recorded DB. The

possible settings are:
" ON : patterns are output to file ()
" OFF : patterns are not output to file

To turn on flleIO, type the goal fileIO(on).
To turn off file]O, type the goal fileO(off.

Turning fileIO off will cause a dramatic increase in the real-time (but not the cpu time)
efficiency of selection, but then the patterns won't be saved to a file.

(3) patterntrace: Controls the printing of trace messages detailing selectional patter.1s
generated and found in the pattern database. Possible settings are:
a ON : tracing messages are printed for every pattern generated, showing the lexical pat-
tern found in the ISR, the class pattern generated from the lexical pattern, and any good
or bad pattern found in the database which match either the lexical or class pattern gen-
erated.
* OFF : no tracing messages are printed ()

To enable the pattern trace, type the goal patterntrace(on).
To disable the pattern trace, type the goal pattern.trace (off).

(4) lnr trace: Controls the printing of trace messages showing the ISRs of LNRs being fed to
the DCG. Possible settings are:
* ON : the ISRs are printed
* OFF: the ISRs are not printed (*)

To enable the LNR trace, type the goal isr-tz ce(lnr,on).
To disable the LNR trace, type the goal isrtrace(lnr,off).

(5) ovo.trace: Controls the printing of trace messages showing the ISRs of SVOa being fed to
the DCG. Possible settings are:
* ON : the ISRs are printed
" OFF: the ISRs are not printed ()

To enable the svo trace, type the goal isr-trace(svo,on).
To disable the SVo trace, type the goal iurtrace(svo,off).
To enable both LNR and SVo traces, type the goal iuor-trace(on).
To disable both LNR and SVo traces, type the goa iurtrace(off).

The three tracing switches (3), (4) and (5) are used to help debug the selection mechanism, and
are probably of little interest to anyone else, as far as I can imagine, so most people will prob-
ably want to leave them set at their defaultsl

IO

I
13. Inspecting, Deleting, and Editing Selectional Patterns

After parsing merrily along for a while, the user might want to see what selectional patterns
have been recorded, and possibly to delete or change some incorrect ones. A large number of
predicates have been provided for inspecting, deleting and editing selectional patterns. All these
predicates have to call a massive ectof, so if there are a great many selectional patterns
recorded, they can take a while.

1 13.1. Inspecting Patterns

To see all the selectional patterns currently recorded, type the goal check-selection.

To see all the selectional patterns currently recorded which contain the word W, type the go,
checkcselection(word ,W).

I To see all the selectional patterns currently recnrded which were generated by sentence S, type
the goal check-selection(sent, S).

To see all the selectional patterns currently recorded of a given type T (e.g., svo, n/adj, v/pp,
etc.), type the goal check-selection (exact-type, T).

If one is unsure of the exact type of the pattern one is looking for, all is not lost. The goal
check- selection(general.Itype,T) will show all the selectional patterns currently
recorded which contain T as one of its components (i.e., one of the constituents on either side of
the "/" in the name of the pattern). For example, if one wants to see a pattern including a q,
but one is not sure if the specific pattern is, say, a n/qn or a qn/n, typing the goal
check- selection(general.Itype,qn) will show all patterns of any type which includes a

* qn.

There is at present no mechanism for examining all selectional patterns containing a word of a

given semantic class.

13.2. Deleting Patterns

There are variations of all of the predicates described above which can be used to delete selec-
tional patterns. Instead of typing check-selection (with either 0 or 2 args) one should type
erase-selection (with either 0 r 2 args).

i erase.selection (0 arguments) will erase all selectional patterns. Period. There is no
prompting, and no confirmation, so be careful! Note that this can also be done using

I rdb-remove.

However, using instead one of the following goals

3 erase.selection(word,W).
era se.selection(exact.typeT).
erase-selection(general _type ,T).
erase-selection(sentS).

will present all the relevant patterns (e.g., all patterns containing the word M, and ask which
ones, if any, to delete. As is the case with examining patterns, there is at present no mechanism

I As

I

I -- -,, -

I
for deleting all selectional patterns containing a word of a given semantic clan.

For example, if one wanted to delete patterns containing the word break, one wol

erase -selection(word,break) . A possible result would be

These are the patterns containing "break" which are currently sto. 3
1: (BAD) <v/pp> [break,off,attack]
2: (BAD) <v/pp> [break,off,situation]

3: (GOOD) <svo> [<SOMEBODY/THING>,break,engagemen

4: (GOOD) <svo> [<SOMEBODY/THING>,break,process

Enter your choices to delete ("h." - help) a->

The patterns are be numbered for reference. The prompt is explicit about what to an, 1
in case of doubt, typing "h." as an answer will generate the following even-more-ex,- -.

message: 3
Please enter one of the following:

-- the numbers of the patterns you want to delete (e.g., "1, 2, 23")

-- "all" to delete all patterns

-- "none" to delete none

followed by a period.

In order to delete some, but not all the patterns, one need not type the numbers in a 3
interface here is extremely flexible. The numbers can be typed in separated by comma
by hyphens if one wants to delete a range of patterns. For example, to delete patte-

6, 7, 8, 9, 10, and 23, one can just type "1. 2, 5-10, 23." 3
Another nice thing about these predicates is that they will not stonewall: For examr -.

user ask for patterns of type T, and although T is valid pattern type, there don't hap; P -

any patterns of that type recorded, (e.g., if the user asks to see sVO patterns, but th.- .
SVO patterns recorded), a message will be printed, warning that

There are no patterns of type svo currently recorded. 3
However, if Tis not a valid pattern type at all, the user will be told that Tis not a
tern type, and a message will be shown presenting the valid pattern types.

One last aspect of deleting patterns involves the "abort" answer to the selectional 0rn

query, which should be used if the user enters an incorrect answer.

After answering a (for abort), the following will happen: First, the user is given a , cc to
undo the command to abort. If the user does indeed want to abort parsing, all patt,.'ns gen-

erated by the current sentence will be presented (in the format shown above), and the - r will
be given a chance to delete any, all, or none of them. The user will then be given a cc to

erase the current sentence itself (in case the sentence itself was incorrectly entered), an(finally,

the parsing will abort, and Prolog will return to the top-level prompt. I
Note that the erase-selection family of predicates will only affect the state of selection in
the current Prolog session. It is the user's responsibility to make appropriate modifications to
any files (e.g., SELECTIONAL_ PATTERNS. pl) which contain the selectional data. 3

I
12 I

I
13.3. Editing Patterns

There are variations of all of the predicates described above which can be used to edit selec-
tional patterns. This mechanism uses the Prolog Structure Editor. Instead of typing
check-selection or erase-selection, just type edit-selection. (This predicate

I exists only in a 2-argument version).

Calling

I edit-selection(word,W).
editselection(exact-type,T).
edit-selection(general-type,T).
edit-selection(sentS).

will prescnt all the relevant patterns (e.g., all patterns containing the word WM, and ask which
ones, if any, to -dit. The acceptable responses are the same as those for deleting patterns.
Once the user has selected which patterns to edit, the mechanism will then invoke the Prolog
Structure Editor on each pattern selected, and modify the selection DB accordingly.

3 It is again the user's responsibility to make appropriate modifications to any files (e.g.,
SELECTIONAL_-PATTERNS. pl) which contain the selectional data.

3 14. Future plans

There are a number of specific areas in which the selection module needs to be modifi.d, some of
i which have been noted previously:

* Improving the treatment of anaphoric and elided elements (such as
<SOMEBODY/THING> and nulln) in selectional patterns to allow the propagation of

attributes deduced by selection.

* Extending the explanation facility (the "r" option) to the word level selection prompt.

* Optimising the matching of class-level patterns to word-level patterns. Several

approaches have been considered. One suggestion has been to allow uninstantiated logic

variables to be part of patterns. This solution has been partly implemented, but certain

problems have not been solved concerning how to index on patterns containing variables.

The approach of compiling the isa hierarchy directly into Prolog unit clauses has also
been tried. The result was a noticeable gain in execution time, but at the cost of compil-
ing in a large file containing approximately 1000 unit clauses. Another technique to be
considered is the use of narrowing or feature intersection (a. la LOGIN).

" Automatic generalization or success for certain specific patterns. For example, any part-

whole relation in a noun/noun pattern such as tsubmarine,hul should be allowed to3automatically succeed.

* New names should be used for the patterns because the slash "/" has been overloaded in
the name of patterns, since it denotes conjunction, modification, and siblinghood.3 * The ability to examine, delete, and edit all patterns of a certain semantic class should be

added.3The selection switches should be be incorporated into the top-level switches mechanism.

I

a a i I I I I I I3

PUNDIT'S SYNTACTIC COMPONENT
DESCRIPTION OF COVERAGE

Lynette Hirschman

1. Introduction to String Grammar

This document will provide an overview of PUNDIT's approach to syntax, based on string
grammar (Z. Harris 1968, N. Sager 1981). Following the overview, the coverage of PUNDIT is
sketched followed by a subsection providing some information on debugging tools and strategies
for debugging PUNDIT's grammar.

PUNDIT's Restriction Grammar is an adaptation cf Sager's well-documented Linguistic
String Grammar. Since our approach has been driven by the need to cover constructions in the
particular texts we were dealing with, we have added constructions to PUNDIT as needed.
This means that by and large the PUNDIT's coverage of standard English is a subset of the
grammar given in Sager's book, although PUNDIT contains additional constructions not docu-
mented in the book, such as an extensive treatment of sentential fragments. Also, over the
years, we have deviated from Sager's string grammar treatment. Some deviations are minor (a
more uniform treatment of modal verbs) and some are major (the meta-rule treatment of con-
junction and of wh-clauses). These will be discussed in later subsections. For a general over-
view of string grammar, Sager's book remains the best reference work. Many of the "missing"
constructions in PUNDIT could be readily added by consulting Sager's treatment.

One of the major extensions to Sager's system is the use of regularization rules with each
produ:tion in the grammar. These rules describe, in a form of lambda calculus notation, how to
combine the daughters of a given node into a regularized operator-operand notation that nor-
malizes syntactic relations and makes explicit many of th, gapped elements. The output of the
regularization is called the Intermediate Syntactic Representation or ISR. It is the ISR that is
passed on to semantis and selection, since it is far more regular than the surface syntactic
analysis. Howeve: t" .SR, its rules and its mechanism will be discussed separately; this section
will focus exclusively on syntactic coverage.

String Grammar Rules and Restrictions

String grammar is written as context-free rewrite rules, in the form of BNF definitions,
augmented by restrictions, which are constraints on the well-formedness of the (partial) parse
tree. As the BNF definitions are applied in string grammar, a partial parse tree is built up,
corresponding to the definitions applied. The restrictions are interspersed with BNF definition
expansion, and check to see that the parse tree constructed so far is well-formed. Restrictions
are used to check for things such as agreement (subject-verb, determiner-adjective-noun), object
subcategorization (so that verbs take only objects that they are subcategorized for), and posi-
tional constraints. These are the well-formedness restrictions, which fire on node completion. In
addition, there are a number of optimization restrictions, that check to see if the pre-conditions
for a particular construction hold. These are "disqualify" restrictions, which fire before node
construction begins. A (simplified) grammar rule might be that assertion constructs a subject,
followed by a verb, followed by execution of the w-agree well-formedness restriction, followed
by construction of the object.

assertion ::= subject, verb, {wagree}, object.

Here we see the well-formedness ("w_") agreement restriction, firing on completion of the verb

node, to check subject-verb agreement.

I
Strings and L'. Ndes

String gr: istinguishes two types of constructs: Head/adjunct (endocentric) con-
structions and A (exocentric) constructs. An endocentric construction has a head flanked I
by left modifier ht modifiers; the behavior of an endocentric construction is governed by
its head; that un phrase is noun-like in its behavior; an adjective phrase is "adjective-
like", etc. Thc -,tric constructions are called lxr constructions in string grammar, where I
x stands for t:, flanked by its left (1) and right (r) modifiers, which may be empty. The
modifier node, 'led Ix and rx respectively (where X is the head of the construction).
Below are list. . f the important xr constructions in string grammar; terminal nodes (lex-
ical classes) a :xt,,d by an asterisk. Note that the basic lexical classes (nouns, adjectives,
verb and verb les) have associated lxr constructions.

In, nvar, rn. nvar = noun or variant (e.g., gerund)

la, *adJ, ra. % adj = adjective 1
lq, *q,rq. % q = quantity word, e.g., "two"

Iv, *v, rv. % v = infinitive form of verb

1v, *tv, rv. % tv = tensed verb I
1 iv, *ving, rv. % wing = present participle of verb
1v, *ven, rv. % yen = past participle of verb

For verbs, ti ±ni right modifiers (Iv, rv) consist of slots for adverbials, e.g., not or I
quickly. Fe, Yes, the left modifier ia consists of an adverb slot for adverbs such as verb;
the right mc t ra consists of a list of options, including prepositional phrase (auspicious
of something" ',,ial complement (certain that they left) and adverbials. For nouns, the left
modifier, In if slots for the determiner (tpos = the position), quantity (qpos), adjectives
(apos) and diliers (npos). The right noun modifier (rn) consists of a list of options for
prepositional rolative clause, adjective, appositive, etc.

Iv : '21. % *dstg = adverb slot I
rv ::- t: null. % pn = preposition + noun = prepositional phrase
la ::l "

ra I
% that + sentence

1n :,:s, apos, npos.
rn

The oti. .nportant construction in string grammar is the string. A string is an exocen-
tric construc t i, that is, a construction whose behavior differs from that of its constituents. For
example, an :4. sertion cannot be considered "verb-like" or "subject-like" in its syntactic proper-
ties. A string is maie up of two or more obligatory elements; the elements of a string are obli-
gatory, except rfr the sa or sentence adjunct elements. Examples of important string construc-
tions are:

;,,S rtion ::= sa, subject, sa, ltvr, sa, object, sa.
sa = sentential adjunct

*p, nstgo. % prepositional phrase
lqr, *n. % e.g., "two foot"

I

vingo ::= Ivingr, sa, object. % e.g., "reading a bock"
vo ::= ivr, sa, object. % e.g. "read a book"
venpass ::= lvenr, sa, passobj. % passive, "seen by me"
tovo ::= to, ivr, sa, object. % e.g, "to read a book"

Strings include basic constructions such as assertion, question, and imperative. The prepositional
phrase (pn) is also a string, since its behaviour is neither that of a preposition nor that of a
noun (in fact, it is often adverbial).

The philosophy of string grammar is to include a slot for each element; the realization of
that element may be the empty string if the element is optional (e.g., adjuncts), or if it has been
"zeroed" (reduced to zero or null) for some other reason (e.g., gapping). The advantage to this
approach is that the skeletal parse tree is very regular. For example, an assertion always con-
tains nodes for subject, verb, and object, separated by sentence adjunct slots. However, many of
those nodes may be empty (including the object can be realized as nullobj for an intransitive
verb). The adherence to this philosophy reduces the number of grammar rules and makes for
efficient top-down parsing, but also makes for bushy trees with many empty nodes.

Object Options In String Grammar

One large group of strings is the class of objects. String grammar handles auxiliaries as
instances of verb + complex object. This gives a very regular, recursive structure to the object
node in string grammar. At the top level, we have the tensed verb, followed by an object. If
the tensed verb is a modal, its object will be vo - an infinitive followed by object, e.g., I may
read the book. If the tensed verb is be, the object may be the participial object vingo, e.g., I am
reading a book, etc. This means that objects carry a great deal of information, and may often
contain the "meaning bearing" verb, where there are auxiliaries, as in It may have to be
reviewed, where review is the meaning bearing verb, embedded in successive objects, as follows:

assertion

subject sa Itvr sa object

IT MAY vo

ivr sa object

HAVE tovo

to verb sa object
S I I

TO BE venpass

Ivenr sa passobj

REVIEWED nullobj

Note that at the "bottom" of this construction is the node nullobj. This indicates absence of an
overt object. It is used to fill the object slot on intransitive verbs and also erapty object slot in
the passive object passobj, as in the tree above.

Strings, LXiRs and Disjunctive Rules

In general, there are three basic types of rules in string grammar: lxr constructions, string
constructions, and disjunctive rules. A disjunctive rule consists of a series of single-element

I

choices. For example, the object rule is a disjunctive rule, na"ning all the possible object
options, separated by semi-colons (indicating disjunction). The ordering of disjunctions in a rule
will affect which parse is found first, since options are applied in order. If the grammar is used I
with the assumption that the first parse will be the one used, then ordering of options can
become important. However, if the system is allowed to run to all parses, then each option will
eventually be tried.

object : : =
nstgo; % noun string object
vingo: % present participle + object I
vo; % infinitive + object
venpass;% passive object

tovo; % to + verb + object 3
The expansion of the nvar rule is also a disjunctive rule:

Inr ::= n, nvar, rn.
nvar : := *n- % noun I

namestg- % proper name construction
*ving; % gerund
nulln. % empty head, e.g., "the few (nulln) are here"

By contrast, any rule that has multiple required elements (indicated by ",") is either a string, or

it expands an lxr node into left adjunct + head + right adjunct, or it involves punctuation. In
general, rules do not mix options (disjunction) and required elements (conjunction). There are, $
of course, a number of exceptions to this principle, but it is an important one to follow when

writing grammar rules, since it preserves clarity and maintains the necessary separation
between string definitions, lxr definitions, and disjunctive rules. For the conjunction meta-rule to
work properly, for example, it is important to identify string and lxr type definitions.

Empty Elements 3
One of the unusual features of string grammar is the proliferation of empty elements.

Since adjunct slots are included as part of the basic node definitions, the result is that these are
often unfilled (indicated by a null) element. There is also nullobj, which indicates an empty I
verb object for intransitive verbs. In addition to these, there are many other flavors of empty
elements which carry important information for construction and regularisation of the surface
syntax. There is the nulln filler for nvar, as in these three are missing. There are several kinds I
of null elements associated with fragmentary input; there is a special kind of null (nulle) for
handlL'.g gapping in conjunction, and yet another (nullwh) for handling gapping in wh-
constructions. Being to distinguish the kind of empty string found in a given location aids the
later regularisation and semantic phases in reconstruction of the missing information.

Meta-Rules, Conjunction and Wh

One of the major departures of PUNDIT's Restriction Grammar from Sager's string gram-
mar is PUNDIT's use of meta-rules to capture certain high-level regularities. The conjunction
meta-rule mechanism is installed in the current PUNDIT system. It operates on the set of BNF I
definitions (without conjunction) and produces a new set of grammar rules which cover most
cases of conjoining and gapping under conjunction. The meta-rule expands each node of type
string or lxr to include, as one option, a conjunction followed by a recursive call to the rule.
Thus the expansion for lnr (simplified) is:

(inr ::-- in, nvar, rni)
(inr :: in, nvar, rn: 3

I

In, nvar, conj wd, lnr).

Thus the inr node can either be expanded as usual, or it can invoke the conjunction option,
which has a conjunction word followed by a recursive call to inr. (In actuality, the rule is writ-
ten more efficiently, so that the ln+nvar+rn does not have to be rebuilt if there is a conjunc-
tion.) Thus BNF definitions can be written without worrying about conjunction, as long as
nodes are properly classified as lxr or string node . The meta-rule component is then applied
to generate automatically the correct rules to support optional conjoining.

W'h-constructions (relative clauses, questions, indirect questions, reduced relatives) are also
be handled by meta-rules. Here, the function of the meta-rule is be to introduce parameters
into each definition, so that gap information can be passed around, namely the need for a gap,
or the fact that a gap has been found. This makes the handling of wh-constructions invisible to
the grammar writer, who need only worry about routine constructions. The treatment of wh-
constructions combines in a very natural way with the meta rule treatment of conjunction.

Naming Conventions

String grammar has a fairly mnemonic set of naming conventions, once you get used to it.
For example, objects are named by their components, e.g., tovo = TO + Verb - Object, or pn
= Preposition + Noun. Somewhat confusing is the stg suffix, as in nstg, astg, dstg. Although
stg stands for string, in fact NONE of the things named by stg are strings. They are lxr con-
structions. Once you get past that basic confusion (of unknown historical origin), the names are
fairly logical.

Type Lists

Since there are certain generalizations associated with strings and lxr nodes, these are
captured by type lists, which allow the grammar writer to define typer, and then to use the asso-
ciated type names in writing restrictions. For example, there is a type lxr, a type Ix, a typerx,
and a type string. The type lxr nodes have an operation on them called core, which goes to
the head of the lxr construction; this operation is used in restrictions, which often state con-
straints between heads of syntactic constructions, e.g., between the head of the subject and the
head (tensed verb) of the ltvr node for subject-verb agreement. Both the Ix and the rx nodes
belong to a broader type, the adjunct type. Adjuncts can typically be empty; the adjunct slot
is the string grammar mechanism for allowing optional elements.

2. Coverage of PUNDIT's Grammar

The subsection will summarize the current state of PUNDIT's coverage. As mentioned in
the introduction to this section, coverage has very much been driven by the needs of the partic-
ular domains we have processed. As a result, it is somewhat uneven, although quite broad.

Noun Phrases

Coverage of noun phrases is generally very good. It includes treatment of complex pre-
nominal modifiers: multiple nouns, adjectives, qn expressions such as a two-foot deep hole, and
nq expressions, such as the number 2 pump. Nominalisations are handled as ordinary noun
phrases in the syntax, so they are covered and later converted by semantics to capture the
underlying verb semantics. A wide range of post-nominal expressions are also covered, including
multiple)repositional phrases, participial expressions (the book read by the students, the person
running the race), adjective expressions (the st,,dent pre.-ent for the c7nm), app '..-.. . '..
parontheLical expressions (Floro-nce Joyner. the Olympic athlete, and my PC (the one I bought a

month ago). Relative clause coverage has been greatly expanded with the introduction of the
new wh-module and includes both standard relative clauses, and sero-complementizer relatives
(the person I saw). Pronouns are handled by a separate Ipror option for the noun phrase; this is
done because pronoun take a highly restricted set of left and right adjuncts, compared to nouns.

Adjective Phrases

Coverage of adjective phrases, in pre-nominal position, predicative position and verb com-
plement position is extensive. In predicative and verb complement positions, adjectives can take
complex right modifiers, including prepositional phrases (certain of a fact) and a variety of
clausal complements (certain that they came, certain to come). In the left adjunct slot, adjec-
tives can be modified by adverbs, e.g, very certain.

Adverbials

The coverage of adverbials in PUNDIT includes left and right modifiers and a recursive
definition (e.g., for very long).

Verb and Verb Complements

Our current grammar includes more than forty classes of verb complement (object). Selec-
tion of the appropriate complement set is controlled by a pruning mechanism that takes the
intersection of the verb's subcategorization constraints (given in the obflust for the verb entry in
the lexicon) with the set of object options. Classes of complement types include:

direct object,
ditransitive,
objects of auxiliary verbs:

vo (I may read the book);
vingo (I am reading the book);
veno (I have finished the book);
venpass (She was given the book);

objects of be and other copulative verbs:
objbe (They are here/at home; they remain leaders),

direct object + prepositional phrase,
particle + various object types,

(e.g., close up, close up the store, close the store up),
clausal objects

(e.g., I said that I would come; it seemed to be raining).
equi-verb objects

(e.g., I wanted to go).
small clauses

(e.g., they painted the house red).

Each of these object options has a regularization rule associated with it that allows correct
reconstruction of the underlying semantics, including correct handling of subject/object control
issues. This is done by the Intermediate Syntactic Regularisation component and will not be
further discussed here; see the PUNDIT Guide to Verb Objects for more complete documenta-
tion of PUNDIT's object options. One respect in which PUNDIT's treatment of object differs
from string grammar is in a uniform treatment of rndals, which sirply take the object option
vo, na" !- "-nitivw verb + obj ct.

Sentential Adjuncts

The grammar covers a variety of sentential adjuncts, including adverbial modifiers
(adverbs and prepositional phrases), purpose clauses (I did it to win), and a range of subordinate
clauses (until finished; before they came; after running the race). It now also covers a class of
adverbial phrases consisting of a lone noun phrase. In normal English, this includes time expres-
sions, e.g., I left last week. Also needed for message texts is a similar location adverbial construc-
tion, such as lesion right lung, where right lung is a locative phrase without a preposition. Both
of the require strong selectional or semantic constraints, in order to avoid taking almost any
noun phrase in any adjunct slot. Not included yet are right-dislocated relative clauses (the per-
son came whom I wanted to meet).

Conjunction

The conjunction meta-rule component generates rule3 to handle conjunction from the basic
BNF definitions. Conjoining is allowed only at lxr and string type nodes, which eliminates some
of the spurious ambiguity that can be associated with treatments of conjunction. The current
mechanism handles a variety of conjunctions (and, or, but), paired constructions (both...and,
neither... nor) and "comma-conjunction" (use of comma to take the place of an explicit conjunc-
tion in a list such as apples, oranges and pears). Since the meta-rule generates a recursive
definition, an arbitrarily long series of conjunctions Can be handled.

nr ::= In, nvar, rn

Inr :: in, nvar, rn;
In, nvar, rn, conjwd, inr.

In addition, the meta-rule component allows for gapping under conjunction. In particular,
it can handle gapped subject, gapped object, and gapped verbs, as follows:

I mixed up the batter and baked the cookies.
I cooked and they ate the cookies.
I baked the cookies and Robin the cake.

At the moment, there are certain constructions that are not handled by the current conjunction
mechanism. One problem is that conjunction requires homogeneity -- only like objects can be
conjoined, for example. Thus PUNDIT cannot parse the construction my friends and I because
the first conjunct is lnr and the second is lpror. Also, certain kinds of partially gapped objects
are not handled, e.g. they broke through and demolished the plate glass window, has a gap in the
first conjunct that is embedded in the prepositional phrase object, following the the preposition
thro s h. Th-'? the object is partially gapped -- which is not currently handled.

Wh- Constructions

The new meta-rule component for wh-constructions now covers questions, relative clauses
and indirect questions (I don't know what they want). We plan to extend it shortly to cover head-
!P4s relative constructions (VY7%Lau.i you need is i4erc) as well. I supports the interaction
between conjunction (and its gaps) and the wh-constructions (and their gaps).

Fragments

Because much of our work has been focused on message traffic, PUNDIT supports a
comprehensive, elegant treatment of fragmentary and run-on sentences that are characteristic
of message text. There are five basic fragment types, including fragments for missing subject
(trot was repaired), missing verb (sero-copula disk bad; disk repaired), missing subject and
verb (predicate, broken since yesterday), missing object (engineer repaired), and noun phrase
fragment (nstgjfrag: bad drive). Other recently added center string rules include rules for
response fragments, necessary to handle certain kinds of question/answer interchanges, e.g., Are
you going? Yes.

2.1. Debugging Tools and Advice

There are a few tools that are useful in debugging parses that either fail or are incorrect.
First, the grammar may be called on any constituent, not just sentences. For example, to see if
something parses as a noun phrase, the parser can be called via parse(nstg), which will prompt
for input, and will produce parses of all substrings of the input that can be parsed as a noun
phrase. This is often useful in a divide-and-conquer approach to debugging, which each phrase
can be checked for its parse.

The grammar can be run in two modes: interpreted and translated. When run inter-
preted, grammar rules are applied as data structures; they do not constitute Prolog procedures,
so the normal Prolog spy mechanism does not work. However, restrictions can be spied on, even
in interpreted mode. This is often useful to get a sense of how far the grammar has gotten, e.g,
if you spy on w-agree, which follows completion of the verb, you know that the verb has been
built. Since the parse tree is passed as a parameter to each restriction, spying on a restriction
also gives you the current (pretty-printed) partial parse tree, which can be useful. The inter-
preted mode has a grind mechanism available, which allows the user to specify a list of
definitions, or all definitions, to be printed out each time they are applied in generating a parse.
This is not interactive, but can be instructive if one has the patience to follow each application
of a set of rules.

When running in translated mode, all grammar definitions are translated into procedure
calls. Thus any definition can be traced via the normal spy mechanism. Again, the parse tree is
present as a parameter, so you will also be able to see the tree. This is very convenient for
debugging.

In addition to these limited tools, there are general strategies for debugging. Step one is to
make sure that you are running with selection turned off and with semantics turned off. Either
of these can cause unannounced failures when turned on. (They are turned on and off via the
switches mechanism - see the PUNDIT User Guide for information on switches. Step two is to
either simplify the sentence or to try the divide and conquer method, parsing constituents one at
a time. The idea is to find the problem area in the sentence and to be able to reproduce the
bug on a minimal structure. Once you know approximately in what construction the bug is
occurring, you can either try spying selected restrictions (and definitions, if running translated)
or try the brute force method of grinding. At this point, however, it should be emphasized that
debugging the grammar remains an art, rather than a science.

ANNOTATED ALPHABETIC LISTING OF BNF DEFINITIONS Adapted from Sager, Natural
Language Information Processing, pp. 310-321 With additional annotations for PUNDIT usage.
** assembled 9/88 by Lynette Hirschman; updated 9/89

****s~s*.**s.**************************.**************.*** Annotations:

indicates NOT in current PUNDIT system
$ indicates in PUNDIT, but NOT in Sager's book.
I indicates significant difference in PUNDIT from Sager's treatment.

adjadj recursive definition of pre-nominal ADJectives
defined as: {dadjadj},larl, (adjadj;-);

lqnr, (adjadj;-)

I adjinrn ADJective IN RN (right adjuncts of the noun)
PUNDIT handles by astg option in rn.

adjn ADJective + n (noun phrase); permutation of object option na,
as in "painted red the house which I saw last week"

I adjpreq ADJective Pre (i.e. before) Q (quantifier),
handled as q option in lq (left-quantifier adjunct).

andstg and string, to handle conjunction.
PUNDIT handles conjunction differently, via metarule.

and-orstg and/cr string for conjunction
PUNDIT handles conjunction differently, via metarule.

apos Adjective POSition of the ordered left adjuncts of a noun
defined as: adjadj; null.

appos Appositive (in right noun adjunct slot)
Differs from Sager in support of parens, explicit punctuation.
defined as: [,],nstg, ([,];{wendmarkl);

M{lnstg, D]

asobjbe AS + OBJect of BE, e.g., "they served as messengers", or in
passive object option, as in: "she was considered as a candidate".

$ assertifrag
assertion -t fragment - type of center string
defined as: assertion,internaLpunct.{vso-selection};

fragment,internaLpunct,{vsoaelection}

assertion subjcct + tense + verb + object, with optional sentence
adjunct* between thebe clAements.

defined as: sa,subject,sa,ltvr,{wagree},sa,object,sa

assertions
null assertion + sentence adjunct, for e.g., "they ran and fast".

asstg as string for comparative;
PUNDIT does not yet have a real treatment of comparative,

but currently handles certain constructions via the I
conjunction metarules.

! astg Adjective string (not really a string!), for predicate adjective
or adjectives in complement constructions.
in PUNDIT, only defined as lar, not lqnr.
defined as: lar. 3

as-well-as-stg

AS WELL AS STrinG, for conjunction.
PUNDIT handles conjunction via me- -rule.

avar Adjective VARiant, containing head of adjective construct.
defined as: lcda,*adj

lcda,*ving
lcda,{dven-avar},*ven

$ be.aux BE-AUXillaries - possible objects following the verb be: i
defined as: vingo;

venpass;
tovo

beingo BEING- Object (as object of be, e.g., "He is being difficult"
PUNDIT handles as be-aux object type.

bothstg both string, for conjunction.
PUNDIT handles conjunction via meta-rule.

butstg but string
PUNDIT handles conjunction via meta-rule.

!center center string of sentence 1
differs from Sager in addition of fragment, compound options.
defined as: {dquest2},assertion,{w-endmark},{vsoselection};

{dquestl),question,{w-endmark},{vso-selection); i
imperative,{ w-endmark} ,{vso.selec tion);
fragment,(wendmark),{vso.selection};
compound,{vso-selec tion) 1

commastg comma string, used for conjunction.
PUNDIT handles conjunction via meta-rule.

$ commaopt COMMA OPTion, consisting of comma or null.
defined as: ,; null.

$ compound COMPOUND center, consisting of recursive def. of assertion or i
fragment, followed by center, or of a runon sentence.

defined as: assert-frag,center;runon

compar Comparative complement (e.g., It is so old that it is i
decaying.) PUNDIT has no treatment of comparative at this time.

i
........ a l lII l I 1 • I II I I I I II

I
I

cpdnumbr Compound number (e.g., one hundred)

I # csstg CS (subordinate conjunction) STrinG list of options in sa.
PUNDIT handles subordinate clauses as explicit options.

3 c1should Subjunctive form of assertion, using untensed verb

defined as: [that],subject,sa,lvr,sa,object,sa

dashstg dash string, for conjunction
PUNDIT handles conjunction via metarule.

dateprep date preposition (e.g., on, in, until, since, etc.)
PUNDIT handles date as a special form of "namestg"
in nvar; dates themselves are handled via the "shapes"

component.

dayyear Various forms of date
PUNDIT handles numerical dates via the "shapes" component.

i dpsn Particle (e.g., up, out) + sn (embedded sentence). (e.g., He
found out that we went.)

3 dpl Particle (e.g., carry on, find out), occurs as object option
defined as: {dLdpval},*dp

dp2 dp (particle) + n (noun phrase), occurs as object option.
defined as: {ddpvall,*dp,nstgo

dp3 n (noun phrase) + dp (particle), occurs as object option.
defined as: {d-dpval},nstgo,*dp

dp4 of-permutation of dp3, e.g., "the splitting up of the project"

i dplp dpi (particle) + p (preposition), occurs as passive object option
defined as: dpl,p.

i dplpn dpi (particle + pa (prepositional phrase)
defined as: dpl,pn

dp2pn dp2 (particle + noun phrase) + pn (prepositional phrase)
defined as: dp2,pn

dp3pn dp3 (noun phrase particle) + pn (prepositional phrase)
defined as: dp3,pn

dp4pn of-permutation of dp3 + pn (prepositional phase)

! dstg aDverb string (which is not really a string, however).
in Sager, defined recursively, but not in PUNDIT for now.
defined as: ldr.

eitherstg either string, for conjunction
PUNDIT handles conjunction via meta-rule.I

I

I embeddedq EMBEDDED Question
handled as snwh option in object.

I endmark Punctuation at end of center string of sentence
PUNDIT lists explicit options of "." , "" and "?" at sentence

and ";", "," and -" connecting centers internally.

$ eqtovo The EQui form of TOVO, where implicit subject is same
as the matrix verb subject, e.g., "I want to go",
as opposed to the tovo option, "the pump seems to fail",
where overt subject is not really subject of matrix verb.
defined as: [to],vo

especially-stg
Especially string, for conjunction.
PUNDIT handles conjunction via meta-rule

fortovo FOR + subject + TO + Verb (infinitive) + Object (e.g.,
For John to see her is important).

fortovo-n for + to + Verb - Object (less one noun phrase in Object,
e.g., the person for John to see), used for wh-gaps.

PUNDIT could handle wh-gaps via meta-rule, although this
construction is not yet handled in current meta-rule treatment.

fraction Fraction; PUNDIT handles via "shapes" component and
via fraction-q definition in qvar.

S fragment option of center, used to parse fragmentary constructions
defined as: tvo;

serocopula;
nstgjfrag;
objbe-frag

howqastg HOW + Quantifier (much, many) or Adjective + [of] +

article STrinG (e.g., how much of the cake, how good an argament)
defined as: how,([much];[many]), ([of],*t;null)

howqstg HOW + Quantifier (much, many) STrinG.
Handled as option of dstg creating a wh-construction.

imperative
Imperative sentence in center string
defined as: sa, vo.

$ internaLpunct
internal punctuation, separating elements in assertfrag def.
defined as: ',' ; ';' ; '-'

introducer
Pre-Center connective to preceding sentence (e.g., and, or,

nor, for)

Not yet in PUNDIT.

la Left adjunct of Adjective
defined as: null;(d-dla},*d

lar Left adjunct of adjective (optional) + Adjective + R'ght
adjunct of adjective (optional)

defined as: la,*adj,ra

I larl lar with limited Right adjuncts, as it occurs to the left
of a noun;

in Sager, defined as usual Lxr, with ral "enough" or null
defined as: la,avar

ldate Left adjunct of date
Dates in PUNDIT handled by shapes component.

ldater Left adjunct of date + Date + right adjunct of date
Date3 in PUNDIT handled by shapes component.

lcda Left part of Compound Adjective
defined as: nul;{d.Jcda},*n

lcdn Left part of Compound Noun
Not in PUNDIT

lcdva Left part of Compound Verbal Adjective (e.g., a hog raising
farm)

Ice Left adjunct of cs (subordinate conjunction)

$ Id Left adjunct of aDverb, captures recursion in adverb
defined as: null; {d-two-dstgs}, dstg.

S ldr Left adjuct of aDverb + aDverb + Right adjunct
adverb defined (recursively) as lxr construction.
defined as: Id, *d, rd.

I In Left adjunct of the Noun
PUNDIT omits nspos position of Sager.
defined as: tpos,qpos,apos,npos,(w-np-agree}

Iname Left adjunct of a Name (e.g., Dr. Jones)

I Inamer Left adjunct of a name + Name + Right adjunct of name
defined as: lname, *proper, mane.

lname Left adjunct of NAME
defined as: *title;null.

lnamesr Left adjunct of name + possessive form of name

Inr Left adjuncts of the noun + n (noun) + Right adjuncts

of the noun
defined as: ln,nvar,{w.noun-agree,rn,{w-vingJnr}

nsr Left adjuncts of the Noun 'S (possession-case noun) +
limited Right adjuncts of the noun

defined as: (ln,*ns,{wnoun-agree);[whosel.

Ip Left adjunct (e.g., adverb) of Preposition
defined as: {dJp},dstg;qn;null

Ipro Left adjunct (e.g, Adverb) of Pronoun (e.g., only he)
defined as: null;{ddltpro},dstg

lq Left adjunct of Quantifier
defined as: *adj, {wadjpreq};{d_dlq},*d; null

lqnr Left adjunct of Quantifier + Noun string + Right adjunct
defined as: lq,qnpos,rq

lqr Left adjunct of quantifier + Quantifier + Right adjunct
defined as: lq,*q,{w-scope},rq

it Left adjunct of t (determiner), e.g., "all" in "all the"
defined as: *d; lqr,{w-pre-tpos};null.

ltr Left adjunct of t + t (determiner) + Right adjunct of t
defined as: It, *t.

ltvr Left adjunct of tensed verb + Tensed form of Verb + Right adjunct
defined as: lv,*tv,rv

Iv Left adjunct of V (verb)
defined as: null; {djlv},*d

Ivenr Left adjunct of verb + VEN (past participle of verb) + Right
adjunct of verb

defined as: lv,*ven,rv

lvingr Left adjunct of v + VING (-ing form of verb) + Right adjunct
defined as: lv,*ving,rv

lvr Left adjunct of v + verb (infinitive) + Right adjunct of v
defined as: lv,vvar,rv

#lvsa Sentence Adjunct occurring to the Left of ving or yen in
the adjunct strings vingo and venpass

1w Left adjunct of w + w (the tense or a modal) (e.g., just can't)
PUNDIT handles tense (w) as regular verb class with vo object.

na Noun phrase + Adjective (as object, eg., paint the house red)
defined as: nstg,sa,lar

namepart Name part (all parts of proper name preceding surname)

namestg NAME STrinG (as value of nvar)
In Sager, defined as name + *n + rname, where Iname
and rname are "name" specific, like titles, "Jr." etc.
This has been used very differently in PUNDIT, to contain
various special kinds of nouns from "shapes" component
defined as: *date; *part-number; lnamer;nq,(w_nqnumber}; *time

nasobjbe Noun phrase + AS + OBJect of BE, e.g., "she interpreted it
as a linguist"
Not yet in PUNDIT

nd Noun phrase + Adverb (as object, e.g., put it here)
Not yet in PUNDIT, but needs to be added!

neitherstg
neither string, used in conjunction.
PUNDIT handles conjunction via meta-rule

nn N (indirect object noun phrase) + Noun phrase
defined as: nstg, nstg.

nnn Nouns occurring as left adjuncts of a head noun (e.g.,
herring gull colony). Used recursive definition

defined as: {dnl),*n; namestg; *n,nnn; namestg,nnn

nocstg nor string, for conjunction
PUNDIT handles conjunction via meta-rule

notopt optional not
"not" treated as adverb in PUNDIT

npn Noun phrase + prepositional phrase (as object)
defined as: nstgo,pn

npos Noun POSition of the ordered left adjuncts of the noun
dtfined as: nnn; null

npsnwh Noun phrase + Preposition + snwh (wh-string as a Sentence
Nominalization)

PUNDIT could handle wh-structures via meta-rule but doesn't yet

npsvingo Noun phrase + Preposition + Subject + ving (-ing form of
verb) + Object

Not yet in PUNDIT

npvingo Noun phrase + Prepositional phrase + ving (-ing form of
verb) + Object

Not yet in PUNDIT

npvingstg Noun phrase + Prepositional phrase + vingstg (either
vingofn or nsvingo)

PUNDIT handles vingstg as normal noun construct, whose
head is *ving (see nvar definition)

nq Noun phrase + Quantifier/letter (e.g., the Mark 2
analyzer, the Model B spectrophotometer)

defined as: nqnvar,*q

$ nqnvar in PUNDIT, just a regular noun
defined as *n

nsnwh Noun phrase + snwh (wh-string as Sentence Nominalisation)
defined as: nstgo, sa, snwh.

nspos Possessive Noun of type position of the ordered left
adjuncts of a noun (e.g., one lost children's bicycle)

Not currently in PUNDIT

I nstg Noun string
Currently PUNDIT does not support nwhstg option for, e.g,
"what I like is fish"

defined as: (d-endmark) ,(lnr,{np-selection};
lpror;
nsvingo).

$ nstg-frag Noun-STrinG FRAGment, e.g, "Bad disk drive."

defined as: sa,lnr,sa,{wbarenstg}.

nstgo Noun string as Object, used to mark objective case for pronouns
defined as: nstg.

nstgt Noun string of Time, e.g., "last week"
defined as: nstg.

nsvingo N'S (possessive-case noun or pronoun) + VING (-ing form
of a verb) + Object

defined as: {d_nullLnsr},vingo;
{d_h!,n,,sJ.. r,vingo,{ w-true-vingo}

nthats Noun .e + THAT + assertion (verb object option)
C1Pfl. • nstgo,sa,thatz-

ntobe Noun pi - TO + BE + object of be
PUNDIT s not require distinction between ntobe and ntovo.

ntovo Noun phrase + to + V (infinitive) + Object (verb object option)
e.g., "I expected them to go"
in PUNDIT, this is distinguished from objtovo. Ntovo is
for objects where the noun is NOT also an object of the

matrix verb.
defined as: subject,[tol,vo.

numbstg Number string
Iot in PUNDIT; numbers in PUNDIT handled by "shapes" component.

null Empty String
defined as - (symbol for the empty string)

$ null]_aux NULL AU)Xliary verb for sero-copula fragment,
e.g, "disk replaced" => "disk be replaced"
Used to mark missing auxiliary, for regularization.
defined as: -

$ null-main NULL MAIN verb for sero-copula fragment,
e.g., "disk bad" => disk be bad.
defined as: -

nulln NULL Noun, used to mark missing head noun in "the three were here"

defined as: -

nullobj NULL Object, used for intransitive verbs, as in "it broke".
defined as: -

nullwh NULL WH, used to mark the wh-gap in questions and relative clauses
defined as: -

nvar Noun or VARiant - options of head for fur construction.
Includes nouns, names, gerund as noun, and nulin (the

empty noun in e.g., "the three").
defined as: *n; namestg; *ving; {dn2},nulln, (wnl}.

nvsa Noun + Verb Sentece Adjunct of the type: "we know" in,
e.g., "It is, we know, unusual."
PUNDIT does not yet handle this, but will need to spoken input.

nwhstg Noun position WH-STrinGs (e.g., What he cooks tasts good).
Contrast with wh-complements, i.e., sentence nominalizations
anwh, e.g., What he cooks depends on what's on sale.

PUNDIT does not yet handle these, but they can easily be
to the wh-meta-rule treatment.

obes Object of be + tensed form of BE + Subject of be
Used for permuted sentence constructions, e.g., "Smart are they..."

PUNDIT does not yet handle this type of construction.

objbe Predicate noun phrase or adjective phrase of pn or adverb
defined as: astg; nstg; {d-of}, pn.

$ objbe-frag
OBJect of BE as FRAGment, e.g, "down since 10/12".
defined as: sa,objbe,{w-predicate},{w-endmark}

objbesa OBJBE occurring as Sentence Adjunct
Not in PUNDIT.

object The set of Object strings of verbs in active voice
defined as: (npn;objtovo;pnthats;nthats;pnthatsvo;nn;na;pnn;

dp2;dp3;dp2pn;dp3pn;nsnwh;dpsn;ntovo;

pn;nstgo;astg;objbe;nthats,dplpn;dpl;
thats;assertion;svo;clshould;sven;sobjbe;
dstg,'veno;be-aux;eqtovo;tovo;vo;nullobj,

{wverbobj},(wpreobj-sa})

objectbe OBJBE + verbal objects of be
PUNDIT uses be.aux and objbe as options of OBJECT instead.

$ objtovo OBJect TO + Verb + Object construction.
objtovo is distinct from ntovo in that the object serves
both as object of the matrix verb and subject of the embedded
clause.
defined as: nstg,[toj,vo

ornot OR NOT, terminating yesor-no question,
e.g, "Are you coming or not?"
Not currently handled in PUNDIT.

orstg or string
PUNDIT handles conjunction via meta-rule.

pl Preposition as passive object (see passobj;
e.g., "They can be relied on".
PUNDIT uses *p instead in passive object.

pa Preposition + Adjective (e.g., at last)
Not in PUNDIT at the moment.

parenstg Parenthesis string
PUNDIT handles as option of appos.

particularly-stg
Particularly string, used in conjunction.
PUNDIT handles conjunction v;a meta-rule.

passobj Object strings in PASSive
defined as: (nullobj;pn;thats;objbe;clshould;assertion;

astg;dplpn;dp 1;snwh;*p;pnthats;pnthatsvo;dpsn;
eqtovo;tovo;dp lp),{wpassobj2))

pdate Date preposition + Date
PUNDIT handles dates by "shapes" component.

permutation
Permuted forms of the center assertion string
Not in PUNDIT yet.

perunit Per + unit (per hour, per cent)
Not in PUNDIT.

pn Prepositional phrase (Preposition + Noun phrase)
defined as: lp,*p,nstg,{w-pval}

pnpn Repeated prepositional phrase
j defined as: pn,({dLof},pn;-)

pnn Prepositional phrase + Noun phrase (permuted form of npn) in object
defined as: pn,nstgo.

pnsnwh Prepositional phrase + snwh (wh-string as Sentence
nominalization)

Not in PUNDIT yet.

pnthats Prepositional phrase + THATS (that + assertion)3 defined as: pn, sa, thats.

pnthatsvo Prepositional phrase + THAT + Subject + Verb + Object
e.g., "I asked of them that they leave"
defined as: pn, sa, cishould.

pnvingstg Prepositional phrase + vingstg (either vingofn or nsvingo)
PUNDIT did not define separate vingstg-related options,
captures this as nsvingo or *ving in nvar.
Not in PUNDIT

$ predicate PREDICATE fragment, consisting of participle
e.g, "Replacing disk."
defined as: sa, be-aux, (w.endmark}.

I # psnwh Preposition + snwh (wh-string as Sentence Nominalization)
PUNDIT does not yet handle snwh constructions, but will
once wh component is installed.

pstg A subset of prepositional object strings used in the lexicon
PUNDIT does not group these options together.

I # psvingo Preposition + SVINGO (Subject + ving (-ing form of verb) + Object)
PUNDIT does not handle this now.

I # pvingo Preposition + vingo (ving + Object)
PUNDIT will handle as nsvingo or *ring in nvar.

pvingstg Preposition + VINGSTG (either vingofn or nsvingo)
PUNDIT will handle as nsvingo in nvar in pn.

pwhnq Preposition + WH-containing Noun phrase + yes-no Question
(e.g., From which side did they enter?)

PUNDIT can handle in new wh meta-rule treatment, but doesns't yet.

pwhnq-pn Preposition + WH-containing Noun phrase + yes-no Question
less a PN (prepositional phrase) in Object (e.g., To whom
is it attributed?)3 PUNDIT could handle in new wh meta-rule treatment.

pwhns Preposition + wh-containing Noun phrase + assertion
(e.g., "the girl from whose apartment it was taken")

I

PUNDIT could handle in new wh meta-rule treatment.

pwhns-pn Preposition + WH-containing Noun phrase + assertion less
a PN in object (e.g., the artist to whom it is attributed)

PUNDIT could handle in new wh meta-rule treatment.

pwhq Preposition + WH-word yes-no Question
(e.g., "For whom was it ordered?")
PUNDIT could handle in new wh meta-rule treatment.

pwhq-pn Preposition + WH-word + yes-no Question less a PN in
Object (e.g., On what is it based?)

PUNDIT could handle in new wh meta-rule treatment.

pwhs Preposition + wh-word + assertion

pwhs-pn Preposition + WH-word + assertion less a PN in object
PUNDIT could handle in new wh meta-rule treatment.

q-assert Assertion used in analyzing comparative
PUNDIT does not currently handle comparative.

q-conj Body of conjunction string following a coordinate.
PUNDIT handles via conjunction meta-rule.

q-invert INVERTed assertion used in analysing comparative
PUNDIT does not currently handle comparatives.

qn Quantifier + Noun (where Noun = name of a unit: " a 3-inch line"
defined as: lqr, {dLsing},*n.

qnrep Repeated qn sequence (4 lb. 2 oz.)
Not in PUNDIT yet.

qns Quantifier + possessive NOUN ("a 4 month's history of headaches")
Not in PUNDIT yet.

q-of q-word (e.g., tens, dozens. lots, hundreds + of)
Used in parsing numbers.
Not in PUNDIT.

qnpos Position of the qn string and nq string in the ordered
left adjuncts of a noun, e.g., "a two ton brick";

in PUNDIT, only qn allowed.
defined as: qn

q-phrase ever, usual, necessary in comparative
(e.g., "We will wait as long as usual.")
PUNDII does not handle comparatives.

qpos Quantifier Position of the ordered left adjuncts of a noun
defined as: lqr;null.

question Question as center string of a sentence
defined as: yesnoq; wh-question.

qvar Quantifier Variant in lqr definition, including q, and numbers
numbers handled by shapes in general.

defined as: *q; fractionq.

ra Right adjuncts of an Adjective
defined as: null;

pnpn;
{d-raising-adj),tovo;
{dequLadj},tovo;
d-sent(thats;assertion).

ral enough or null as Right adjunct of an Adjective
occurring as left adjunct of a noun

Not in PUNDIT; larl has no right adjunct.

rd Right adjunct of an Adverb, e.g., "enough"
defined as: null.

rdate Right adjunct of Date
PUNDIT handles dates via "shapes" component.

$ relclause
Takes the place of Sager's rnwh options.
defined as: whRC,assertion,{w-needgap}

I rname Right adjunct of a Name, e.g., "Jr.", "II"
defined as: null (for now).

rnp Strings beginning with a Preposition as Right adjuncts
of a Noun phrase

PUNDIT does not use this intermediate node, has pnpn option instead
rn*r Right adjuncts of a Noun phrase (*r indicates adjunction

is repeatable)
PUNDIT does not support repetition except via pnpn rule.
defined as: {dendmark},pnpn-vingo;

{dn.comp}, (thats;clshould;tovo: subi;
appos;astg,{w-heavyrn} ;reLclause;

sero-comp;
null;
venpass,{wjheavymrn}

for wh, also defined as:
{d-endmark},pnpn;

rnsubj Right adjuncts of a Noun SUBJect at a distance in sa
(e.g., A procedure is described which...)
Not yet in PUNDIT.

rnwh Relative clause, i.e., WH-string, as Right adjunct of a Noun

This functionality is captured via options in rn.

$ rpro Right adjunct of PROnoun
PUNDIT distinguished Ipror from Inr.
defined as: null.

rq Right adjunct of a quantifier, e.g., "enough" or empty.
defined as: null

rsubj Roving adjuncts of the Subject (or a more proximate
noun) of quantifier type (e.g., We are all amazed).

Not in PUNDIT.

S runon RUNON sentence or sentence fragments
defined as: assertion,center,{vso-selection);

fragment,center

1 rv*r Right adjuncts of a Verb (*r indicates adjunction is repeatable)
Not repeatable in PUNDIT; Sager also allows dstg, pn, qn, sn.
defined as: null.

rw Right adjunct of w (the tense or a modal) (e.g., He is
not coming; she will not be here)

PUNDIT does not distinguish modals from regular verbs.

saconj Sentence Adjunct following a coordinate CONJunction
Handled as simple sa in PUNDIT.

I sa*r Sentence Adjuncts (*r indicates adjunction is repeatable)
Not repeatable in PUNDIT; also fewer options.
Specifically, the options for time nstg (nstgt), roving
adjuncts (rsubj, rnsubj), passive (e.g, "attacked by the snakes")
and comparatives are missing in PUNDIT.
defined as: null;

{d__endmark},commaopt,{dsa},
((&d.dor-p),dstg);tovo;sub7 ;subl ;subO;{dof},pn;
({dinit-sa} ,vingo)),

{wmed-sa },commaopt,{w-comma-symmetry}
for wh, also defined as:

(d{post-obj), {d_nullwhin_sa,dstg.

sasobjbe Subject + AS + OBJect of BE
Option of object, e.g., "they saw this as their opportunity"
Not in PUNDIT yet.

sawh WH-strings in the set of Sentence Adjuncts
Will eventually be handled via meta-rule.

sawhichstg
WHICH-STrinG (relative clause) as Sentence Adjunct

(e.g., "She left, which surprised him.")

saz Adjunct of a Zeroed sentence under conjunction

(e.g., He left, and fast.)
Not in PUNDIT.

scalestg Scale string in qn, e.g., "two feet long"
Not in PUrNDIT

I sentence Intror lucer + center + endmark in Sager
No introducer in PUNDIT.
defined as: center, ([.1;[?1).

n# s Sentence Nominalization option of subject,
including thats, fortovo, tovo cishould and snwh
Not included in PUNDIT yet.

s-n Assertion less one Noun phrase (i.e., headless relative clause)
Will be handled by meta-rule in PUNDIT when wh is installed.

I snwh WH-string as a Sentence Nominalisation (i.e., wh-cornplement)
e.g., "whether I will leave is unclear"
defined as: (whQ,assertion);(whQ,tovo).

sobjbe Subject + Object of BE option of object
e.g., "they consider them fools".
defined as: nstg,sa,objbesa.

sobjbesa Subject + OBJect of BE occurring as Sentence Adjunct
Not in PUNDIT.

stovo-n Subject + TOVO-N string as object of have
e.g., "I have things to do"
Not yet handled in PUNDIT

subject Subject of verb in the same string
defined as: nstg; there-def.

! subO Subordinate conjunction + Object of be
e.g., "after failing the test"
defined somewhat more broadly in PUNDIT, including Sager's
subO, sub2, sub3, sub4 definitions.
defined as: *cso,venpass;

*csO,vingo;
*csO,objbe.

subi Subordinate conjunction + assertion
e.g., "because they are leaving"
defined as: *csl,assertion.

sub2 Subordinate conjunction or as or than + venpass (passive
verb with its passive object)

PUNDIT captures in subO

sub3 Subordinate conjunction + ving -ing form of verb) + Object
PUNDIT captures in subO

I
I

sub4 Subordinate conjunction -v ring string (either vingofn or nsvingo)
ving string handled in nstg in PUNDIT. 3

sub5 Subordinate conjunction + svingo
e.g., "despite the disk failing the test"
Not included in PUNDIT. I

sub6 Subordinate conjunction + sobjbe
e.g., "with them out sick"
Not handled in PUNDIT

sub7 Subordinate conjunction + sven
e.g.,"with the crisis ended" I
defined as: *cs5 sven.

sub8 Subordinate conjunction (as) + inverted Assertion
Not in PUNDIT. n

sub9 Should + svo, subjunctive adjunct
e.g., "should she accept, she can start tomorrow." I
Not in PUNDIT.

sven Subject + passive verb with its passive object (venpass)
option of passive object, e.g., "I got the disk fixed" I
defined as: subjectsa,venpass,sa.

svingo Subject + VING (-ing form of verb) + Object 3
Option of object, e.g, "I watched them running the race"
Not yet in PUNDIT.

svo Subject + Verb (tenseless) + Object
Option of object, e.g., "I let them go"
defined as: subject,sa,lvr,sa,object,sa 5

tense Position for tense-word (modal)
PUNDIT handles modals as regular verbs.

thanstg THAN STrinG, for comparative constructions.
PUNDIT has no treatment of comparatives

thats THAT + assertion option of object i
e.g., "I hope that they come"
defined as: thatl,assertion. 5

thats-n THAT + assertion less one Noun phrase (relative clause
with word that instead of wh-word)

PUNDIT handles via meta-rule component for wh. 3
$ there-def There (pleonastic) option in subject.

defined as: [there]. 3
I title A Title used as part of a name (e.g., Mr., Ms.) in namestg

defined as as atom, option of Iname. i

I

tobe TO + BE as tenseless Verb + Object
PUNDIT covers as part of tovo options.

tostg TO string (from 3 to 4 hours)
PUNDIT handlles conjunction use of "to" via meta-rule.

tovo TO + tenseless Verb + Object
Option of verb object, e.g, "She seemed to win".
tovo in PUNDIT is split into tovo and eqtovo, to distinguish
equi cases ("I hope to win") from the raising case.
defined as: [to],vo.

tovo-n TO + tenseless Verb + Object less one Noun phrase in object
e.g., "the person to see"

PUNDIT should handle this via a meta-rule consistent with
meta-rule wh treatment, but does not at this time.

I tpos t (The) Position of left adjuncts of noun phrase
Sager uses ltr instead of just *t..
defined as: ltr; null.

tsubjvo Tense + Subject + tenseless Verb + Object,
e.g.,"Would they were gone".
Not defined in PUNDIT.

S tvo Tensed Verb + Object fragment
e.g, "fixed the disk"
defined as: sa, ltvr, sa, object, sa.

veno VEN (past participle of a verb) + Object option of object,
e.g., "They had seen the light".
defined as: {dsel4),lvenr,sa,object,sa.

venpass VEN (past participle of a verb) + Passive object
Option of object, e.g, "it was given to her"
defined as: {dsel4},lvenr,{wpassobjl},sa,passobj,sa

verb tensed or tenseless Verb with optional left and right adjuncts
Replaced by ltvr or lvr in PUNDIT.

verbl tense-word or tensed be or have in question
replaced by ltvr in PUNDIT.

verb2 2nd Verb position in Question
replaced by lvr in object in PUNDIT.

vingo VING (-ing form of Verb) + Object
Option of object, e.g., "I am going to work"
defined as: {dsel5},lvingrsa,objectsa

vingofn VING + of + Noun phrase
PUNDIT handles as regular nstg.

vingstg VING string (nsvingo or vingofn)
PUNDIT has separate nsvingo definition in nstg.

vingstgpn VING string + pn (presositional phrase)
PUNDIT has separate nsvingo definition in nstg.

vo tenseless Verb + Object
option of object, e.g., "I would do it".
defined as: lvr,sa,object,sa

vvar Verb VARiant

In Sager, defined as tensed or tenseless verb;
In PUNDIT, used for empty verbs in fragment definitions.
defined as: *v;{d_nullv},nulLmain;nulLaux.

$ wh WH word; note that this calls nstg, which in turn calls wh-word.

defined as: where; when; why; {dwh}, nstg.

S whRC WH word for relative clauses

defined as: wh-word; that.

$ whQ WH word for questions
defined as: {dwhihow),dstg; [what]; wh.

$ wh-word WH word within noun phrases
defined as: [who]; [whom]; [which].

whats-n WHAT + assertion less one Noun phrase
In PUNDIT,could be handled as part of meta-rule treatment for wh.

whens WHEN or where or null + assertion
(when can be null if string adjoins time noun)
PUNDIT handles via meta-rule wh treatment.

wheres WHERE + assertion
PUNDIT handles via meta-rule wh treatment.

wheths WHETHer or where or when or how or why of if + assertion
+ optional [or not]

Not yet incorporated, could be part of wh meta-rule treatment.

whethtovo WHETHer (or other wh-words) + TO + Verb + Object
e.g., "whether to go or not"
Not yet incorporated in PUNDIT, could be handled via wh meta-rules

whevers-n WH-EVER (whose, whenever, whichever, whatever) + assertion
missing a Noun phrase, e.g. " whatever they wish"
Not yet incorporated in PUNDIT, could be handled via wh .ta-rules

whln wh-word (whose, which, what, how string) as Left adjunct of a Noun

option of tpos.
defined as: which; what; howqastg.

whn Noun phrase or vingofn string carrying a WH-word
(e.g., whose book was lost)

Handled via whln construction and wh-treatment

whnq-n WH-containing Noun phrase + yes-no question less Noun

(e.g., whose book have you?)
Handled via whln construction and wh-treatment

whns-n WH-containing Noun phrase + assertion less one Noun phrase
Handled via meta-rule in PUNDIT.

I whq WH-word + yes-no question

Handled via meta-rule in PUNDIT.

whq-n WH-word + yes-no question or assertion less one Noun phrase

Handled via meta-rule in PUNDIT.

I whs-n WH-word + assertion less one Noun phrase

Handled via meta-rule in PUNDIT.

yesnoq yes-no question (e.g., Have you a book?, Did she leave?)

defined as: sa,ltvrsa,subject,(w-sai),sa,object,sa

$ serocopula
fragment with ZERO COPULA, e.g, "disk bad".

defined as: sarsubjectaa,lvr,{w-frag-verb),
sa,object,{w.pn},{w-nonnulUn} ,sa

$ zero-comp Zero-complement relative clause construction,
option of rn, as in "the person I saw"
defined as: subject, {w.serocomp}sa, ltvr,(wagree}sa,objectfsa.

Lexical Look-Up Procedure
in PUNDIT

Lynette Hirschman

This document describes the lexical look-up procedure for PUNDIT. We begin with a brief
description of the lexicon and its organization. We then provide an overview of the functions of
the lexical look-up procedure. Finally, we describe in more detail the specific relations used to

implement the lexical look-up procedure. Appendix 1 provides a detailed description of the for-

mat of a lexical entry.

1.1. Organization of the Lexicon

The PUNDIT lexicon has several features that are relevant to this discussion.

Entries indexed on first word
Each lexical entry is entered into the (Prolog recorded) database, indexed on the first
word. Most entries, of course, have only one word; however, for multi-word expressions
(e.g., red blood cell), the entry is indexed only on the first word (red in this example).

Form of entry in lexicon
The colon (both in prefix and infix forms) is used as a functor in the lexicon. Each entry
in the lexicon consists of the WORD, the index term, the root, and the attribute list. The
source form of the lexicon looks as follows:

:(WORD, root: ROOT, ATTRIBUTEJLIST).
where ATTRIBUTELIST is a list of the form:

[LEXICALCLASS : ATTRIBUTES MORE-ATTRIBUTES].

Idioms (multi-word expressions) are entered by use of the circumflex infix operator ('),
which connects the words in the multi-word expression, e.g.,

:(red^blood^cells, root: red'blood~cell, In: [ncountl, plural]]).

The colon is treated as a regular Prolog relation; code associated with its definition causes
the source entry to be recorded in the database, indexed on the word (or first word, in a

multi-word expression), e.g.,

records(red, :(red^blood^cells, root: red~blood ceU, In: [ncountl, plural]]).

For purposes of editing and displaying lexical terms, each word is also cross-indexed under
its root. This is done by code in the module readin.pl.

Compression of redundant iformation
The PUNDIT lexicon enters each morphological variant as a separate entry, since there is
(currently) no separate morrhological component. As a result, there is a great deal of

redundancy between morphologically related entries. To minimize this redundancy, the
lexicon compresses information, storing the full set of attributes in the root entry, and
using pointers to this information in the morphological variants. This means that at lexi-
cal look-up time, the look-up procedure must "reconstitute" entries for individual words

into their full form. This process is described in some detail in section ??. For example, the
entry for the word "cells" is as follows:

:(cells, root: cell, In: [plural, 11]]).

In this entry, 11 is the pointer to the attributes associated with the noun entry. (The use
of numbers as pointers is an historical artifact, based on the representation used in the
Linguistic String Project; it could and probably should be replaced with more mnemonic
pointer labels, such as noun-attributes, verb-attributes, etc.). In order to track down the
information represented by the pointer 11, the look-up procedure goes to the entry

corresponding to the root (e.g., cell) and finds there a specification of what the pointer 11
stands for. By convention, the pointer definition follows (occurs to the right of) its

invocation in a definition (for the root word). jor a non-root word (a word which differs
from its root), the definition of the pointer may either be found locally, or can be found
associated with the root entry. Thus "cell" is a root word, and the definition for "11" is
found following its invocation:

:(cell, root: cell. in: [singular, 11], 11: [ncountl]]).

Using this information, the entry for cells is reconstituted as:

cells : [n :[root: (cell], plural, ncountl]].

This is the form returned by assembledefris, for ease of use in attaching terminals to the
parse tree. When a word is actually attached, only the particular definition corresponding
to that terminal is attached to the tree.

Multiple Entries
A single word may have multiple entries in .he lexicon. This can reflect incremental addi-
tions to the lexicon, or it can reflect differing forms, e.g., different parts of speech, as in the
noun train vs. the verb train; it can result from genuine homographs, such as the verb can
used as a modal (be able) or as a transitive verb for the canning process. At times, it can
also reflect an error, where two people have independently entered the same word into the
lexicon. In any case, one function of the lexical look-up procedure is to amalgamate these
entries into a single entry for purposes of parsing. Where two entries are identical, the
program is smart enought to simply collapse them. In other cases, the union of the attri-
butes is recorded. For example, suppose the entry slow has the following two entries, one
for the adjective and the one for the verb:

:(slow, root: slow, [adj]).}
:(slow, root: slow, [tv: [...1, v:[..]).

During lexical look-up, these are amalgamated into a single entry:

:(slow :[
adj: [root: slow]l,
tv: [root: [slow], plural, objlist: [...], ...],
v: [root: [slow], objlist: [...], ... l).

If a word has two identical definitions, the redundant information is suppressed. However,
if two not-quite-identical definitions are given, they will both be passed along. For exam-
ple, if the source lexicon contains the following two entries:

:(sugar, root: sugar, n: [singular, mass]).
:(sugar, root: sugar, n: [singular, ncount1]).

then the lexical look-up procedure will generate the following entry for consumption by the
parser:

sugar: In: [root: [sugar], singular, mass],
n: [root: [sugar], singular, ncountlfl.

Shapes: a grammar for producfive forms
The last issue concerns the problem of how to store productive forms in the lexicon. This
arises, for example, for numbers, dates, times, part numbers, etc. The solution in PUNDIT
is to use a shapes grammar (in shapes.pl), which parses the tokens within a productive
form, identifies the class (and attributes) of the lexical entry from the shape of its tokens,
and assigns it a definition on this basis. Definitions derived from the shapes component
are then added to the list of possible definitions for a word.

Choosing a definition
At this pont,, definitions sharing the same root have been merged into a single definition;
however, there may be distinct entries due to distinct roots, or due to idiom look-up, or
due to use of the shapes component. The final stage is to chose one of these definitions to

pursue, and hand off the remainder of the word stream for further processing. (In a
bottom-up system, it would be possible to generate a lexical lattice at this point, with arcs

spanning one or more nodes, and each arc associated with a distinct definition.) For now,
the choice of definition done by "longest first". This means that if, for example, there are
entries for both "sickle cell" and "sickle cell anemia", if the word stream matches "sickle

cell anemia", this definition will be chosen in preference to the shorter sequence "sickle
cell". However, this choice is backtrackable, so that if no parse is obtained, the system
can backtrack to this point and try a shorter (or different) expression. In general, how-

ever, it appears to be the case that if a parse is obtained with the longer definition, it is
incorrect (and can lead to spurious ambiguities) to backtrack and obtain multiple parses.
Therefore, it would probably be appropriate to introduce some code to commit to this
choice in case a parse is obtained.

1.2. The Code in Lexical Look-up

This section documents the important procedures used in lexical look-up. The comments
reflect the current state of the code, which clearly could use some clean up.

assembledefrx(+InputWordStream,- DefinltlonLlst,- RemalnlngWords)

This is the top-level routine, called after the call to makeWordList has converted tokens
into words (code in reader.pl). It is called recursively, consuming one lexical unit on each call.
A lexical unit is a single word or a multi-word expression that starts at the current point and3 spans one or more "words". The procedure assembledefnr has the following steps:

1. Find in the lexicon ALL ENTRIES beginning with WORD
(done in lookup/2)

2. Match multi-word expressions beginning with WORD
(done in possible-entries/3);
this creates a list of possible sequences matching the input stream,
together with a notation of how many words each candidate eats up.
creates a data structure e(Def,Num), where Num is number of words - 1
spanned by the definition.

3. Get all the roots associated with each candidate

(done in allow-mult-roots/3);
this changes the "e(Def,Num)" data structure to "e(DefRoot,Num)".

4. Use the roots to decompreoz the definition (the "number lists")
(done in filL-in-def/2);
this creates a set of decompressed possible definitions;
it also changes the "e" data structure from

e(DefRoot,Num) to e(RevisedDef, Num),
where Def = :(Word,root:RootAttributes)
and RevisedDef = :(Word, LexClassList),

where each element of LexClassList =

LexClass: [root:[Root], LexClassAtts].
5. Merge entries for a given word and same root into a single entry

(done in merge-entries/2);
this allows, for example, creation of a single def. given
two entries, one for slow: [adj], and one for slow: [v, tv];

6. See if WORD is parsable as a shape
(done in alL-shape-entries/2, modify-shape-entries/2);
this produces an additional list of definitions,
which is appended to existing list;57. Select the LONGEST definition

I

(done by choose-def/4) ** this is a backtrack point **

8. Call assembledefns/3 recursively to process rest of word stream.

lookup(+Word, -LlstOfefsStartjng WithWord)

The procedure lookup consults the lexicon for all entries stored under Word and returns
all distinct definitions found under the key Word that start with word. This may include
multi-word definitions and multiple definitions with either the same or different root forms.

posslble-entles(+LlstOfDefsStartingWithWd,+RemalnlngWds,-ListOfMatchngDefs)

This procedure takes the list of possible definitions generated by lookup and tries to
match multi-word expressions against the input stream. It generates a data structure
e(DefNum), where Num is the number of additional words consumed from the input stream.
This is eventually used to the longest multi-word expression from competing possible alterna-
tives.

allow.mult__roots(+ListOfMatchngDefs,+TempList,-RevisedE StructureList)

This procedure takes the output of possible-entries, namely LiStOfMatchingDefs, and gen-
erates extra entries for any definition that is not its own root, but points back to a root
definition that has multiple entries. It creates a list element for each entry paired with a
specific root definition. It also revised the e data structure to have the form e(DefRootNum).

filllin-def(+RevisedEStructureList, -FilledInDeffilst)

This procedure handles the "decompression" of pointers into explicit attribute lists. Its
input is the revised "e" structure list from allow__mult-roots. Its output is a differently struc-
tured definition list, with pointers replaced by attribute lists. The output list is structured for
ease of use in parsing. Thus the list consists of the word or words, followed by the list of lexical
classes. Within each lexical class, we find the root and the remaining attributes associated with
that lexical class. Thus the definition list now has the form:

Word: [Lexclassl: [root: [Rootll I Lex-class-attiistl],
Lex-class2: [root: [Root2] :Lex-class-attJist2],

}.
The procedure filUndef calls on fillin-attrbs, which works right to left and has responsibility
for both capturing pointer definitions (and collecting them for use in resolving pointer refer- I
ences) and resolving invocations of pointer definitions, either by looking at those pointer
definitions already captured, or by finding the root, and capturing the definitions from the root
word. 3
merge-entres(+FilledInDefLst,-MergedDefList)

The procedure merge-entries merges all definitions consuming the same number of words
into a single entry. In addition, it merges entries with identical roots into a single lexical-class
entry. For example, it would convert the following input to a single entry, first by combining the
two entries for wordlword2, then by combining the attribute lists for the entries with identical
roots.

[e(wordl-word2: (n: [root: [wordl-word2], ncountlll, 1),

I

e(wordl'word2: in: [root: [wordlword2], mass]], 1)]

[e(wordl word2: In: [root: [wordiword2], ncountl, massfl.

all-shape-entrles(+WordStream, -ShapeDeiLlst)

Thi procedure invokes the shapes grammar against the input stream and produces a set
of possible pairs consisting of a shape length and its definition. The shapes grammar is defined
in shapes.pl and provides entries for productive forms, such as numbers, dates, etc. If the
shapes grammar produces no entries, the empty list is returned.

modfi yshape-entrles(+WordNumShapeEntryPairs, -ModifiedShapes)

This procedure takes as input a list of pairs of the form ShapeLength.ShapeDef and returns
the appropriate "e" structure list, so that the shapes definitions can be merged with the previ-
ously collected definitions.

ehoose-def(+LlstOfPossiblltles, -ChosenDef, +WdsAfterStartWd, -RemainingWds)

The procedure choose-def takes as its input the merged set of definitions from the regular
lexical look-up procedure and from shapes and selects the definition spanning the longer number
of words. It also creates a back-track point, so that the remaining definitions can be explored
via backtracking into lexical look-up if desired.

APPENDIX 1

SPECIFICATION OF LEXICAL ENTRIES IN PUNDIT

Franqois Lang

This is an attempt to formalize Pundit's lexical entries, which I have coded as part of an
error-checking mechanism to be added to the readin.pl file. The reason for doing this is
that there is currently no mechanism for ensuring the well-formedness of lexical ejitries which
are read in. In fact, as I'll point out, there are a disturbingly large number of lexical entries
currently in some lexicon file which, for one reason or another, are bogus.

All terminology set in slanted font is defined in what follows.

The following must be true of a Pundit lexical entry:

1. It is a (syntactically correct) ground Prolog term.

2. Its principal functor/arity is :/3.

3. Its first argument is a lexical item.

4. Its second argument is a term of the form root :Root, where Root is a lexical item.

5. Its third argument is a definition list.

A lexical item is either a lexical atom' or an idiom.

A lexical atom is one of the following:

1. an atom containing exact!y one character C such that if A is ASCII equivalent of C, the
goal singleCharacterWord(A) succeeds.2

2. an atom containing only the following characters:

(a) alphanumerics (i.e., a ... z, A ... Z, and 1 ... 9),

(b) the single- and double quote characters ("' and """), and

(c) the underscore character ("2).

1Throughout this specification, I have tried to be very careful to distinguish atoms and atomic terms.
The distinction is that numbers are atomic terms, but not atoms. I.e., if X is currently instantiated to a
number, the goal atomic(X) succeeds, but the goal atoinM(X) does not. I specify here that lexical items are
atoms, and not atomic terms, because numbers are now analyzed by the shapes component, and have been
taken out of the lexicon.

2The predicate ,ingleCharacterword/1 is defined in the file reader.pl.

1I

An idiom is a term of the form X-Y wheie X is either an integer or a lexical atom, and Y is
either an integer, a lexical atom, or itself an idiom. E.g., starting'air-compressor is an
idiom, as is : (cgn (-) -25, root:bainbridge, [proper]).

A definition list is a (possibly empty) list of definition terms.

A definition term is one of the following:

1. A category definition,

2. A pointer definition,

3. A lexical category.

A category definition is a term of the form Cat :FeatureList, where

1. Cat is a lexical category, and

2. FeatureList is a feature list.

A pointer definition is a term of the form Pointer:Definition, where

1. Pointer is an integer, and

2. Definition is a feature list.

A lexical category is a term C such that the goal get-type(C, atomic-node) succeeds (e.g.,
adj, n, p, pro, proper, q, v, ven, ving). All lexical categories are atoms.

The Cat and Pointer terms appearing as th: left-hand arguments of :/2 in category defi-
nitions and pointer definitions, respectively, can be referred to as definition heads.

There are a few additional constraints:

* At least one definition term in a non-empty definition list must be either a category
definition or a lexical category. In other words, it is incorrect for all definition terms in
a definition list to be pointer definitions. E.g., the following list is not a valid definition
list:

[12: [vendadj,h-modalJ ,3: [sasobjbe,nstgo,vingo] ,11: [ncounti,nonhuman]]

* A pointer definition in a definition list must appear after (i.e., to the right of) all
references to it. This means that pointer definitions should in general appear after all
other definition terms in a definition list. E.g., neither of the following lists is a valid
definition list:

[v: [12] ,12: [objlist: [nstgo]] ,tv: [12,plural]]

Cv: [13] ,tv: [13,plural] ,15: [pval: [forto]l ,13: [objlist: [nstgo,npn: [15]]]]

2

A feature list is a (possibly empty) list of feature terms.

A feature term is one of the following:

1. A term of the form Feature:Expansion, where

(a) Feature is a feature head, and

(b) Expansion is a feature list.

2. A feature.

A feature head is one of the following:

1. A lexical attribute

2. A term of the form X-Y (leftover LSP medical categories), where X and Y are both
atoms. In such terms, X will almost always be the atom h. A complete listing of all
such "hospital terms" currently appearing in Pundit lexicons has been collected. Note
that these X-Y terms are not atoms, contrary to popular belief and expectations. These
X-Y terms are totally irrelevant to all current uses of Pundit, and could (should) be
removed from our lexicons. Removing them would simplify this formalization of lexical
entries.

A feature is one of the following:

1. A term of the form X-Y as above

2. An idiom

3. An atomic term3

A lexical attribute is any one of a well-defined set of atoms (such as objlist, pobjlist,
pval, and dpval).

As mentioned earlier, there are currently a number of lexical entries which do not meet these
criteria. Some of them have problems not directly related to their form. For example, many
lexical entries assume that cs2, cs3, cs4, cs5, cs6, cs7, cs8, int, punct, and v are lexical
categories. However, since none of these atoms appears prefixed by '*' in the body of a BNF

grammar rule, they are not known as atomic nodes, and thus not lexical categories. If such
3 We cannot restrict features which are not idioms and not "hospital terms" to be just lexical attributes,

since both numerical pointers and lexical items (prepositions, for example), neither of which which are lexical
attributes, regularly appear as features in feature lists, as in n: [singular, 1 i] and pn: Cpval: [off, from.]I.
It might be possible somehow to restrict non-idiom features to integers, lexical items, and lexical attributes,
but this will require more thought. For now, we will say no more than these features are atomic.

3

an unknown lexical category is encountered while reading in a lexicon, an appropriate and
persipcuous warning message should be issued, but reading in the lexicon should be allowed
to continue.

In addition, there are the following entries (at least) which are simply bogus. Again, if such
an ill-formed entry is encountered while reading in a lexicon, a warning message should be
issued, but processing should continue. For most of these entries, it is left as an exercise to
the reader to determine the exact problem!

:(re-examination,
root: examination,
En: [11,singular],1I: [nonhuman,h-vmd,h-rep,h-record]])

:(re-examinations,
root: examination,
En: [11,plural])

:(seeking,
root: seek,
Ering: [12] ,vveryving])

Hint: vveryving is not a lexical category.

:(shear,
root: shear,
[v: [12) ,tv: [12,pluralJ,
12:[objlist:[nstgo,nullobj,[dp] ,npn: [pval:[off,from]f])

:(sheared,
root : shear,
[tv: [12,past] ,ven: [14],
14: [12,pobjlist: [nullobj, [dp] ,pn: [pval: [off,from]ll])

:(timing,
root :time,
In,singular,ving: [12])

:(try,
root :try,
En: [11,singular] ,v: [121 ,tv: [12,plural],
12: Eobjlist: [3] ,notnobj: [i] ,vendadj ,h-modal],
3: [sasobjbe,dp4: [15) ,dp2: [15] ,dp3: [15] ,nstgo,vingo,eqtovo,npn: £16] ,nullobj],

16: [pval: Eoni],l: [ntimel,ntime2],14: [objlist: [3],vendadj,pobjlist: [4]],

4: [asobjbe,dpI: [15],pn: [16),nullobj] ,15: [dpval: Eout]],
11: [ncountl,nonhuman,h-_1882]])

4

Hint: Look at the very end of the entry. Also, the pointer definitions for 3 and 16 appear
before they are referenced.

: (works,
root :work,
[n,singular,tv :[12]])

: (nimitz,root,nimitz, [proper])

5 I

I

Prolog Structure Editor

Leslie Riley
3 John Dowding

LBS Technical Memo 29
January 1986

The Prolog Structure Editor is a general structure editor written in Prolog.
It is intended to make it easy to edit Prolog terms by allowing the user to
edit a term by traversing its internal structure. As used in the
Natural Language group, the Prolog Structure Editor allows you to edit
grammar rules, word definitions in the lexicon, and arbitrary Prolog clauses.
You may invoke the editor on one of these three types of structures by using
one of the following top-level procedures:3 edit-rule(Key)

edit-word(Word)
edit-clause(Functor)

The edit-rule procedure takes as its argument the name of a non-terminal.
It then allows you to edit all of the grammar rules that define that non-
terminal. In order to maintain consistency between the grammar rules and
their translated versions, when you have completed editing the set of rules the
editor will ask if you want to re-translate them.3 The edit-word procedure takes as its argument a word from the lexicon.
It then allows you to edit the definitions of that word and all of its morphologi-
cal variants.

The edit-clause procedure takes as its argument the name of some Pro-
log procedure. The editor finds all clauses with that head and returns them as3 a set of clauses to be edited. While this option is only of limited use in Quintus
Prolog (because the procedure being edited must be declared dynamic), in Sym-
bolics Prolog it will allow you to edit any Prolog procedure.

Once you have called one of the three procedures that invoke the editor,
you will enter the top level. This level is distinguished from lower levels in
that you are not actually editing a Prolog term, but editing a set of terms. At
this level you can perform operations on the set of clauses in the procedure
like retracting an old clause, or asserting a new clause. 1

These changes to the database are not actually recorded until the editing session is finished.I
i

The editor will -eport at every level what kind of structure you are editing.
The kinds of structures that the editor knows about are:

A Set of clauses (top level only)
A List of terms
A Conjunction of terms (actually any infix right-associative operator)
A Complex Term (A functor followed by some number of arguments)
An Atom

It will then display the functor of the term (if appropriate) and the members of
the term. Following are some examples:

Editing a Set of Rules
Rulel: objectbe::=(astg;nstg;pn),{sem-.rep(append)}
Rule2: objectbe:: =(vingo;venpass), {se mnrep(copy) }; {dwh2 } ,nullwh

Editing a term
Functor: ::=
Argument 1: objectbe
Argument 2: (vingo;venpass), {semrep(copy) }; {dwh2} ,nullwh

Editing conjoined terms
Functor: ,
Term 1: {dwh2}
Term 2: nullwh

There are two types of commands that you can give to the structure edi-
tor: Movement commands and Editing commands. At every level in the edi-
tor, you are stationed at some Prolog term (except at the top level, when you
are stationed at a set of terms). There are then two kinds of movement com-
mands: downward movement and upward movement. A downward move-
ment command is simply an integer that specifies which of the arguments of the
current term you wish to move down to, from 1 to N (You can sometimes move
to the 0th item, if the term has a functor then it is considered the 0th argu-
ment). At any term, only one direction is up, so the command 'u' will move you
up one level in the structure. For convenience, the command 't' (for 'top') will
move you to the top level.

I
An editing command is one which actually modifies the structure of the

term that you are stationed at. The editing commands that are currently sup-

ported are:

delete5Specified by 'd<integer>'. This command deletes the named term.

insert-after
Specified by 'i<integer>'. This command inserts a new term after the
mentioned term. '10' will make the new term the first argument. You will
be prompted for the term that is to be inserted. As this new term is a Pro-5 log term, you will have to end your input with a period.

replace
Specified by 'r<integer>'. This command replaces the specified term inIthe place of the mentioned term. You can sometimes replace the 0th item,
if you want to change the functor of some complex term.

3These commands are also available:

downward-movement
Specified by <integer>. Moves down to the Nth term of the current term.

Imove-up
Specified by 'u'. Moves up to the term that contains the current term.

go-to-top
Specified by 't'. Moves to the top level.

abort
Specified by 'a'. Ends the editing session and does not save any of the
changes made!

print
Specified by 'p'. This command prints the structure of the current term

This command should only be used at the end of a command line.3 help
Specified by '?'. This command prints out a listing of the available cor-
mands. It should only be used at the end of a command line.

If you command the editor to insert a whole rule, word, or clause, it will
print out .in entry from the set you are editing (to serve as a "template" of the
type of entry you want to create) and ask you to edit that entry to form the5new entry that you want to insert. (As a warning, do not insert a structure and
then delete it. Instead, wait until the end of the editing session, and answer
"no" to the query, "do you want to add ...?") If you try to replace a rule or

Sclause, the editor moves to that rule or clause and asks you to replace each
part individually (this is supposed to save you keystrokes).

I
I

To end the editing session, you must be at the top-most structure (a set of
rules, a set of words, a set of clauses). At that level, type 'u' (or 't'), and the
editor will ask you if you want to save the changes that you have made.

A SAMPWLE EDITING SESSION:

?edit-rule(objectbe).

Editing a Set of Rules
Rulel: objectbe::=(astg;nstg;pn),{sem xep (append)}
Rule2: objectbe::=(vingo-venpass),{sem ep(copy)} ;{dwh2} ,nullwh
Command: 2

/* edit the second rule

Editing a term
Functor::=
Argument 1: objectbe
Argument 2: (vingo;venpass),{semrep (copy)); ;dwh 2),n u lwh
Command: 2

/ * move to the second argument

Editing conjoined terms
Functor:;
Term 1: (vingo,-venp ass), {semrep(copy)l
Term 2: {dwh2},nullwh
Command: 2 r2

/ * replace the second argument of the second term

Replace the term: nullwh
with what Prolog term: stuff.

Editing conjoined terms
Functor: ,
Term 1: {dwh2}
Term 2: stuff
Command: t

/ * go to the top level

Editing a Set of Rules
Rulel: objectbe::=(astg;nstg;pn),{sern ep(append)}
Rule2: objec tbe::=(vingo;venpass),{Isem-rep (copy)); kdwh2}J,stuff
Command: t

/* go to the top again, i.e., finish editing this rule

('t'and 'u' have the game effect at this level)

Do you want to replace: objectbe::= (vingo;ven pass), tse mre p(copy));{ dwh2),null
wh
with: objectbe::=(vingo;venpass),{sem rep (copy)); (dwh2),stuff
Enter 'y' or Wn: n

If you have changed any grammar rules, you will have to either:
1. Retranslate this rule.
2. Switch the grammar to run interpreted only.
3. Do nothing (and risk inconsistency!).

Please enter 1, 2, or 3: 8.

yes

I ?- edit-word(replace).

Editing a set of words with the same root
Word 1: :(replace,root:replace,[v:[1 21,tv:[12,pluril], 12: [objlist;[nstgo,pn:[p

val: with]],npn:pval:[withflfl])
Word 2: :(replaces,root:replace,[tv:[1 2,singular]l)

Word 3: :(replaced,root:replace,[tv:[12,past],ven: [141,14:[12,pobjlist: [nullob
j,pn:[pval:[with]fl]l)
Word 4: :(replacing,root:replace,[ving:[12]])

Command: 8
/* edit the third word

Editing a term
Functor: :
Argument 1: replaced
Argument 2: root:replace
Argument 3: [tv:[12,past],ven:[I4],14:[12,pobjlist:[nullobj,pn:[pval:jwithfl]]
I
Command: 8

/* move to the third argument (a list)

Editing a list
Element 1: tv:[12,past]
Element 2: ven:[14]
Element 3: 14:[12,pobjlist: nullobj,pn:[pval:[with]]]]
Command: 11

/* insert an element into the list after the first
element of the list

What Prolog term should be inserted: stuff.

Editing a list
Element 1: tv:112,pastl
Element 2: stuff
Element 3: ven:[141
Element 4: 14:[12,pobjlist:[nullobj,pn:[pval:[with]]]]
Command: u

/* go up one level

Editing a term
Functor: :
Argument 1: replaced
Argument 2: root:replace
Argument 3: [tv:[12,past],stuffven:[14],14:[12,pobjlist:[nullobj,pn:[pval:[wi
th]]]]
Command: t

I
'I

Editing a set of words with the same root
Word 1: :(replace,root:replace,[v:1 21,tvd12,plurall,12:[objlist:[nstgo,pn:[p
vah: withli,npn: [pvah: withf]f]])

Word 2: :(replaces,root:replace,[tv:[1 2,singular])
Word 3: -replaced,root:replace,[tv:[1 2,past],stuffven:[14,14:[12,pobjlist:I
nullobj,pn:[pvah withfl]J)
Word 4: :(replacing,root:replace,[ving:[121])

ICommand: u

Do you want to replace: :(replaced,root:replace,[tv:[I12,pastl,ven:14,14:[12,
pobjlist:[nullobj,pn:[pval:[withl]]]).
vI ih: :(replaced,root:replace, [tv:[12,past],stuff,ven:[141,14:[12,pobjlist:[nu
llobj,pn:[pval:[with]]]]]).
Enter 'y' or 'n': n

yes

: ?- edit-word(contol).

Editing a set of words with the same root
Word 1: :(control,root:control,n:[11,singularl,v:[I 2],tv:[12,plural,l:[nonh
uman,h-change,h-normj,12:[objlist:l,notnsubj: 2l,vrnanner,h-change,h-norml,1:
[nstgo,nsvingo,vingofnl,2: [ntime 111)
Word 2: :(controlled,root:control,[tv:[12,past],ven:[14],14:[objlist: (1 J,notns
ubj:[2],vmanner,pobjlist:[3],h-change,h-norm,3:(nullobjil)
Word . :(controlling,root:control,[vng:[12]])
Word 4: :(controls,root:control,n:ll1,plural],tv:[12,singular]])
Command: 14

/ * insert a word after the fourth word

I Here is a word of the type that you want to create.
Edit it to make the new word.
Editing a term
Functor: :
Argument 1: control
Argument 2: root:control
Argument 3: [n:[11 ,singularj,v:[12),tv:[12,plurall,11: [nonhuman,h-change,h-nor
ml,12:[objlist:[1],notnsubj: [2l,vmanner,h-change,h-norm],1: nstgo,nsvingo,ving
ofn],2:[ntimel]]

: /* replace the first argument, in this case,

the word to be defined

Replace the term: control
with what Prolog term: controller.

Editing a term
Functor: :
Argument 1: controller
Argument 2: root:control

I

Argument 3: [n: [I ,singularl,v: [I2],tv: [I2,plural], 11 :[nonhuman,h-change,h- nor
m),1 2: [oblist: [,notnsubj: [2],vmanne r,h-change,h- norm], 1: [nstgo,nsvingo,ving
ofnl,2:[ntixnel]
Command: r8

/ * replace the third argument, in this case, the

definition list

Replace the term: In: (1 1 ,singularl,v: (1 21,tv: 1 2,p lur all, 11 :[nonhuma n,h-c hange
,h-norm],12:[objlist:[1],notnsubj:[2],vmanner,h-change,h-norn],1:[nstgo,nsving
o,vingofn] ,2:[ntime ill
with what Prolog term: In:411,singular],ll [humanfl.

Editing a term
Functor: :
Argument 1: controller
Argument 2: root:control

Argument 3: [ns [11,singular],lis [humnan)]
Command: t

Editing a set of words with the same root
Word 1: :(control,root:control,n:[1 1,singular),v:[12],tv:[12,plural],1 1 :nonh
uman,h-change,h-norml, 12: [obj list: [11,not nsubj: [2] ,vma nne r,h-ch ange,h- norm],1:
[nstgo,nsvingo,vingofn],2: [ntime III)
Word 2: :(controlled,root:control, tv: (12,past,ve: (141,14:[(obi list:[(I ,notns
ubj:[2],vmanner,pobjlist:[3j,h-change,h-norm),3: [nullobj]])
Word 3: :(controlling,root:control,ving:[12]])
Word 4: :(controls,root:control,(n: [11 ,plural],tv:[12,singular]])I
Word 5: :(control ler,root:control, [n: (Ii ,singular], ,11: [humanfl)
Command: t

Do you want to add the word: :(controller,root:control,n:[11,singular,l1:[hu
man]]).
Enter 'y' or 'n': y3

yes

System Administration for Pundit (SAP)

File: -nlp/bin/SA-bin/README
Author: Korrinn Fu
Date: 3/23/89; 4/14/89; 4/17/89; 5/3/89

I. SAP Overview

This is our new tool for Pundit system administration. We named it "SAP", which stands for
System Administration for Pundit. SAP is an interactive tool which will guide you through the
system administration process. It provides menu choices for each step of the process, and you
will no longer need to get printouts of other documentations in order to do system administra-
tion.

For those of you interested in seeing further documentation on the system administration pro-
cess, look into the README files in ~nlp/NEWFILES/system-administration/command-files,
and in its subdirectories NEWFILES-cf and pundit-cf. Another piece of useful information is in
-nlp/NEWFILES /system-administrator/checklist. Some of the information is outdated-we
don't do system administration on the vax anymore. However, the checklist has an excellent
overall description of the entire system administration process which SAP performs.

II. Software architecture

The software architecture of SAP is fully illustrated in a diagram-a gremlin figure depicting
the flow of control of SAP is in SA-structure.grn. The shellscripts in "nlp/bin/SA__bin are also
fully documented with input/output parameters.

To look at this structure, all you have to do is (in suntools):

gremlin SA.structure.grn

or print it out on the imagen just like how you'd print other gremlin pictures. To print this file,
all you have to do is:

1. create a file with the following 3 lines:
.GS
file SA.structure.grn
.GE

2. print it out to image:
grn <filename created in 1.> I ditroff -me -Pip<1 or 2>

M. How to use SAP

First, make sure you have access to the path -nlp/bin (in your .login or .cshrc), or you would
need to enter the entire path.

Second, you need to be user nip to execute SAP. To do this, just type to unix prompt:

su nlp

and enter the password when prompted.

I
To start the system administration procedure up, type at the unix prompt:

sap

This will display an overall picture of the system administration process and a menu. The menu
choices are:

1. make NEWFILES images
2. update pundit (update-pundit) I
3. make stable images
4. clean up
5. undo and redo

Choice 1 allows you to make the NEWFILES images. Choice 2 activates the command
update-pundit to move new files to the stable directory. (There is a man page for this com-
mand.) Choice 3 creates the stable pundit images. Choice 4 allows you to remove files that are
no longer needed, and archive other files for future use. Choice 5 is a menu for NEWFILES and

pundit, it allows you to do partial restart on images. You can choose to redo NEWFILES
images, or pundit stable images; all the images of just a subset of the images. I

Since each menu choice is rather self-explanatory, I'll not go into the details of each here.
However, a brief description of each item is provided in section IV.

You are responsible for checking the image results after NEWFILES images, and after stable
images are created. To do this, look at the -nlp/NEWFILES/<domain>/<domain>_diff.test
for NEWFILES, and into nlp/pundit/< domain>/< domain>_diff.test for the stable images. I
This provides information on any new change that the current image has, over the previous
image; whether the current result is consistent with the result from the last administration. If
there are differences, you'd need to check with the author(s) of the codes to see if the difference
is intended.

IV. Files important to the administrator

SAP creates a number of log and err files during it's tour of system administration. The files
of interested for an administrator to look at to monitor the progress is: (in nlp/bin/SA_bin) I

NEWFILES:
NEWFILES.log
NEWFILES-time.log
NEWFILES.err

pundit:

pundit.log

pundit.errredo:i
redo.log

redo-time.log
redo.err

The <NEWFILES, pundit, redo>.Iog files tells you which step SAP is at regarding the image

making and testing process. These are the messages printed by SAP, at each different stage of
making/t=st'ng an image.

The *time.log files tells you the time a process started/ended. The purpose of this file is to keep
a time stamp on each step of making/testing an image. Before a process is started, the file gets

l

I
I

a time stamp. After a process is completed, the file gets another time stamp.

U The *.err files are the diagnostic/error messages produced by SAP. By looking at the error mes-
sages of this file, you can tell whether there were any poblems with making/testing the images,
and what kind of problems they were.

V. Main menu choices

(1) SAP first checks if there is enough disk space, we have decided that 5% available disk

space is required for us to have a successful image making round. If there isn't enough
space, SAP would ask if you'd like to see a list of images under "nlp, and even send a
request to delete images out to the group if you'd like.

3 SAP allows a user to make all the images (pundit, casreps, muck, ships, trident, and
opreps), or just a subset of the domain images. If only a subset of the images are created,
a test-< domain>_<current date>.log file is created from the previous log. This is to3 ensure uniformity so the next time, SAP'd be able to find the proper log files.

(2) SAP provides update-pundit as a menu choice following 1. so you don't have to find out
what comes after making NEWTFILES images.

(3) After you have checked the NEW.ILES images, you will go on to make the stable images.

SAP allows a user to make all the images, or just a subset of domain images, just like that
of NEWFILES.

(4) After you checked the stable images and they are correct, SAP cleans out the NEWFILES,
stable and SAP's directory. This step will take more time as SAP prompts you for permis-
sion to "save" or "rm" before every erasure. This is the last step of the whole process.

(5) Each time after creating images (steps 1 and 3), you might find mistakes in the images,
and you'd want to redo the incorrect images. SAP allows you to do partial restart via
menu choices. It prompts you for (y/n) input, allowing you to redo all the images, or just3 a subset of the domain(s).

I
I

I
I
I
I
I

Control Flow newScript.sa

of gap

t Jevel-menu. a

doNF.sa doPunditsa redo-menu.sa c ean-upsa

check- set- which- reMake- clanNs clea

spacesa date.sa domain.sa mage.sa is

see-. change-.ols~a poess redo- ceD-.s
doiist~sa processss lleanps

mail~~~sa ~domain-rd-l.g oc

subset.sa atls

NLBOs.sa send.sa makesa 1.i nd

Iog.sa Imageisas.

tnsapundit.sa domain.sa end.sa done.sa

